Các bài toán về phương pháp quy nạp năm 2024
Tài liệu gồm 10 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương pháp quy nạp toán học, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. Show
Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected] BÀI VIẾT LIÊN QUANThầy cô giáo và các em học sinh có nhu cầu tải các tài liệu dưới dạng định dạng word có thể liên hệ đăng kí thành viên Vip của Website: tailieumontoan.com với giá 500 nghìn thời hạn tải trong vòng 6 tháng hoặc 800 nghìn trong thời hạn tải 1 năm. Chi tiết các thức thực hiện liên hệ qua số điện thoại (zalo ): 0393.732.038 Điện thoại: 039.373.2038 (zalo web cũng số này, các bạn có thể kết bạn, mình sẽ giúp đỡ) Kênh Youtube: https://bitly.com.vn/7tq8dm Email: [email protected] Group Tài liệu toán đặc sắc: https://bit.ly/2MtVGKW Page Tài liệu toán học: https://bit.ly/2VbEOwC Website: http://tailieumontoan.com Bài viết Phương pháp quy nạp toán học và cách giải bài tập sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 11. Phương pháp quy nạp toán học và cách giải bài tập1. Lý thuyết Để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ ℕ∗ là đúng với mọi n mà không thể thử trực tiếp được thì ta thực hiện theo các bước sau: Bước 1: Kiểm tra rằng mệnh đề đúng với n = 1. Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k, (k ≥ 1) (gọi là giả thiết quy nạp). Bước 3: Ta cần chứng minh mệnh đề đúng với n = k + 1. Các bước làm bài toán như trên ta gọi là phương pháp quy nạp toán học, hay gọi tắt là phương pháp quy nạp. Tổng quát: Xét mệnh đề P(n) phụ thuộc vào số tự nhiên n. Để chứng minh một mệnh đề P(n) đúng với mọi n ≥ n0 (n0 là số tự nhiên cho trước) thì ta thực hiện theo các bước sau: Bước 1: Kiểm tra P(n) đúng với n = n0. Bước 2: Giả sử n ≥ n0 đúng khi n = k, (k ≥ n0). Bước 3: Ta cần chứng minh P(n) đúng khi n = k + 1. Kết luận: Theo nguyên lí quy nạp toán học, ta kết luận rằng P(n) đúng với mọi n ≥ n0. 2. Các dạng bài tập Dạng 1. Chứng minh đẳng thức Phương pháp giải: Làm theo 3 bước như phần lý thuyết đã nêu. Ví dụ minh họa: Ví dụ 1: Chứng minh rằng với mọi số nguyên dương n, ta có: Lời giải Bước 1: Với n = 1, ta có: (đúng). Vậy (1) đúng với n = 1. Bước 2: Giả sử (1) đúng với n = k. Có nghĩa là ta có: Bước 3: Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh:
Thật vậy, ta có: Vậy (1) đúng khi n = k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n. Ví dụ 2: Chứng minh rằng với mọi số nguyên dương n, ta có: 1. 4 + 2. 7 +... + n(3n + 1) = n(n + 1)2 (1) Lời giải Bước 1: Với n = 1, ta có: 1. 4 = 1.(1 + 1)2 (đúng). Vậy (1) đúng với n = 1. Bước 2: Giả sử (1) đúng với n = k. Có nghĩa là ta có: 1. 4 + 2. 7 +... + k(3k + 1) = k(k + 1)2 (2) Bước 3: Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh: 1. 4 + 2. 7 +... + k(3k + 1) + (k + 1)(3k + 4) = (k + 1)(k + 2)2 Thật vậy 1. 4 + 2. 7 +... + k(3k + 1) + (k + 1)(3k + 4) \= k(k + 1)2 + (k + 1)(3k + 4) \= (k + 1)[k(k + 1) + 3k + 4] = (k + 1)(k + 2)2 (điều phải chứng minh). Vậy (1) đúng khi n = k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n. Dạng 2: Chứng minh bất đẳng thức Phương pháp giải: Để chứng minh một mệnh đề P(n) > Q(n) phụ thuộc vào số tự nhiên n đúng với mọi n ≥ m (m là số tự nhiên cho trước), ta thực hiện theo hai bước sau: Bước 1: Chứng minh rằng khi n = m. P(m) > Q(m) luôn đúng Bước 2: Với k là một số tự nhiên tùy ý, k ≥ m. Giả sử đúng với n = k, ta được P(k) > Q(k) đúng Bước 3: Ta sẽ chứng minh đẳng thức đúng khi n = k + 1. Theo nguyên lí quy nạp toán học, ta kết luận rằng P(n) đúng với mọi số tự nhiên Ví dụ minh họa: Ví dụ 1: Chứng minh rằng với mọi số nguyên dương n ≥ 3, ta có: 3n > n2 + 4n + 5 (1) Lời giải Bước 1: Với n = 3 ta có 33 > 32 + 4.3 +5 ⇔ 27 > 26 (đúng). Vậy (1) đúng với n = 1. Bước 2: Giả sử với n = k, k ≥ 3 thì (1) đúng, có nghĩa ta có: 3k > k2 + 4k + 5 (2). Ta phải chứng minh (2) đúng với n = k + 1 Có nghĩa ta phải chứng minh: 3k + 1 > (k + 1)2 + 4(k + 1) + 5 Thật vậy, nhân hai vế của (1) với 3 ta được: 3.3k > 3.k2 + 12k + 15 3k + 1 > (k2 + 2k + 1) + 4(k + 1) + 5 + (2k2 + 6k + 5) Vì (2k2 + 6k + 5) > 0 ∀k ≥ 3. Vậy 3k + 1 > (k + 1)2 + 4(k + 1) + 5 (đúng). Vậy (1) đúng với mọi số nguyên dương n ≥ 3. Ví dụ 2: Chứng minh rằng với mọi số nguyên dương n ≥ 2 ta có: Lời giải Đặt Bước 1: Với n = 2 ta có (đúng). Bước 2: Giả sử với n = k thì (1) đúng, có nghĩa ta có: Bước 3: Ta phải chứng minh (1) đúng với n = k + 1 Có nghĩa ta phải chứng minh: Thật vậy ta có:
Vậy (đúng). Vậy (1) đúng với n = k + 1. Vậy (1) đúng với mọi số nguyên dương n ≥ 2. Dạng 3: Chứng minh sự chia hết Phương pháp giải: Làm theo 3 bước như phần lý thuyết đã nêu. Chú ý một số dấu hiệu chia hết - Dấu hiệu chia hết cho 2: các số có chữ số tận cùng là 0, 2, 4, 6, 8. - Dấu hiệu chia hết cho 5: các số có chữ số tận cùng là 0 hoặc 5. - Dấu hiệu chia hết cho 3: các số có tổng các chữ số chia hết cho 3. - Dấu hiệu chia hết cho 9: các số có tổng các chữ số chia hết cho 9. - Dấu hiệu chia hết cho 4: hai chữ số tận cùng tạo thành 1 số chia hết cho 4. - Dấu hiệu chia hết cho 6: các số vừa chia hết cho 2 vừa chia hết cho 3. - Dấu hiệu chia hết cho 8: ba chữ số tận cùng tạo thành 1 số chia hết cho 8. - Dấu hiệu chia hết cho 10: chữ số tận cùng bằng 0. - Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2. - Tích của ba số tự nhiên liên tiếp luôn chia hết cho 2, 3 và 6. - Tích của bốn số tự nhiên liên tiếp luôn chia hết cho 2, 3, 4, 6 và 8. - Tính chất của sự chia hết: + Nếu hai số a và b đều chia hết cho m, thì tổng (a + b) và hiệu (a – b) chia hết cho m. + Nếu mỗi số ai ⋮ mi, (i = 1,2,...,n) thì tích (a1a2...an)⋮(m1m2...mn) Ví dụ minh họa: Ví dụ 1: Chứng minh rằng với mọi n ∈ ℕ∗ thì n3 + 2n chia hết cho 3. Lời giải Đặt P(n) = n3 + 2n. Bước 1: Với n = 1, ta có P(1) = 13 + 2.1 = 3⋮3. Suy ra P(n) đúng với n = 1. Bước 2: Giả sử mệnh đề đúng khi n = k ≥ 1, tức là: P(k) = ( k3 + 2k)⋮3 Bước 3: Ta cần chứng minh mệnh đề đúng khi n = k + 1 Tức là chứng minh: Thật vậy: P(k + 1) = k3 + 3k2 + 3k + 1 + 2k + 2 \= k3 + 3k2 + 5k + 3 \= (k3 + 2k) + 3(k2 + k + 1) \= P(k) + 3(k2 + k + 1). Mà P(k)⋮3 và 3(k2 + k + 1)⋮3 nên mệnh đề đúng khi n = k + 1. Vậy theo nguyên lí quy nạp toán học ta có mệnh đề đúng với mọi n ∈ ℕ∗. Ví dụ 2: Chứng minh rằng với mọi n ∈ ℕ∗ thì 4. 6n + 5n – 4 chia hết cho 5. Lời giải Đặt P(n) = 4. 6n + 5n – 4. Bước 1: Với n = 1, ta có P(1) = 4. 61 + 51 – 4 = 25⋮5. Suy ra mệnh đề đúng với n = 1. Bước 2: Giả sử mệnh đề đúng khi n = k ≥ 1, tức là: P(k) = (4. 6k + 5k – 4)⋮5. Bước 3: Ta cần chứng minh mệnh đề đúng khi n = k + 1 Tức là chứng minh: P(k+1) = (4. 6k+1 + 5k+1 – 4)⋮5. Thật vậy: P(k + 1) = 4. 6k+1 + 5k+1 – 4 \= 4.6k.6 + 5k.5 – 4 \= 24.6k + 5.5k – 4 \= 6(4.6k + 5k – 4) – 5k + 20 \= 6P(k) – 5k + 20 Mà nên P(k+1)⋮5 ⇒ mệnh đề đúng khi n = k + 1. Vậy theo nguyên lí quy nạp toán học ta có mệnh đề đúng với mọi n ∈ ℕ∗. Dạng 4: Quy nạp trong hình học Phương pháp giải: Làm theo 3 bước như phần lý thuyết đã nêu. Ví dụ minh họa: Ví dụ 1: Chứng minh rằng tổng các góc trong của một đa giác lồi n cạnh (n ≥ 3) là: (n – 2)1800. Lời giải Đặt S(n) = (n – 2)1800. Bước 1: Với n = 3, ta có S(3) = 1800. Suy ra mệnh đề đúng với n = 1. Bước 2: Giả sử mệnh đề đúng khi n = k ≥ 3, tức là: S(k) = (k – 2)1800. Bước 3: Ta cần chứng minh mệnh đề đúng khi n = k + 1 Tức là chứng minh: S(k + 1) = (k – 1)1800. Thật vậy: ta tách đa giác (k + 1) cạnh thành đa giác k cạnh và tam giác A1AkAk+1 bằng cách nối đoạn A1Ak. Khi đó tổng các góc trong của đa giác lồi (k + 1) cạnh bằng tổng các góc trong của đa giác lồi k cạnh cộng với tổng ba góc trong của tam giác A1AkAk+1. Tức là: S(k + 1) = S(k) + 1800 = (k – 2)1800 + 1800 = (k – 1)1800 Do đó mệnh đề đúng khi n = k + 1. Vậy theo nguyên lí quy nạp toán học ta có mệnh đề đúng với mọi n ∈ ℕ∗; n ≥ 3 Ví dụ 2: Chứng minh rằng số đường chéo của một đa giác lồi n cạnh (n ≥ 4) là: . Lời giải Đặt . Bước 1: Khi n = 4, ta có S(4) = 2. Suy ra mệnh đề đúng với n = 4. Bước 2: Giả sử mệnh đề đúng khi n = k ≥ 4, tức là: Bước 3: Ta cần chứng minh mệnh đề đúng khi n = k + 1 Tức là chứng minh: Thật vậy: ta tách đa giác (k + 1) cạnh thành đa giác k cạnh và tam giác A1AkAk+1 bằng cách nối đoạn A1Ak. Khi đó trừ đi đỉnh đỉnh Ak + 1 và 2 đỉnh kề với nó là A1Ak thì ta còn lại (k + 1) – 3 = k – 2 đỉnh, tương ứng với (k – 2) đường chéo kẻ từ đỉnh Ak+1 cộng với đường chéo A1Ak thì ta có số đường chéo của đa giác (k + 1) cạnh là:
Do đó mệnh đề đúng khi n = k + 1. Vậy theo nguyên lí quy nạp toán học ta có mệnh đề đúng với mọi n ∈ ℕ∗; n ≥ 4. 3. Bài tập tự luyện Bài tập trắc nghiệm Câu 1. Một học sinh chứng minh mệnh đề “8n + 1 chia hết cho 7, với mọi số tự nhiên n khác 0” (*) như sau: - Giả sử (1) đúng với n = k, tức là 8k + 1 chia hết cho 7. - Ta có: 8k + 1 + 1 = 8(8k + 1) - 7, kết hợp với giả thiết 8k + 1 chia hết cho 7 nên suy ra được 8k + 1 + 1 chia hết cho 7. Vậy đẳng thức (1) đúng với mọi n ∈ ℕ∗ Khẳng định nào sau đây là đúng?
Câu 2. Cho với n ∈ ℕ∗ Mệnh đề nào sau đây đúng? Câu 3. Cho với n ∈ ℕ∗ Mệnh đề nào sau đây đúng? Câu 4. Với mọi n ∈ ℕ∗, hệ thức nào sau đây là sai? Câu 5. Cho với n ≥ 2 và n ∈ ℕ. Mệnh đề nào sau đây đúng? Đáp án 1 2 3 4 5 D B B D D Bài tập tự luận Câu 6. Chứng minh rằng với mọi số nguyên dương n, ta có: . Câu 7. Chứng minh rằng với mọi số nguyên dương n, ta có: 1.2 + 2.5 + 3.8 + …+ n(3n – 1) = n2(n+1). Câu 8. Chứng minh rằng với mọi số nguyên dương n, ta có: Câu 9. Chứng minh rằng với mọi số nguyên dương n ≥ 2, ta có:
Câu 10. Chứng minh rằng với mọi số nguyên dương n, ta có: Câu 11. Chứng minh rằng với mọi số nguyên dương n ≥ 5, ta có: 2n > n2. Câu 12. Chứng minh rằng với mọi số nguyên dương n ≥ 3, ta có: 2n > 2n +1. Câu 13. Chứng minh rằng với mọi số nguyên dương n ≥ 4 ta có: 3n-1 > n(n +2). Câu 14. Chứng minh rằng với mọi số nguyên dương n thì n3 + 11n chia hết cho 6. Câu 15. Chứng minh rằng với mọi số nguyên dương n thì 4n + 15n – 1 chia hết cho 9. Xem thêm phương pháp giải các dạng bài tập Toán lớp 11 có đáp án, hay khác:
Săn shopee giá ưu đãi :
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official Tổng đài hỗ trợ đăng ký : 084 283 45 85 Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube: Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn. |