Hay chọn câu đúng tam giác đều có 3 trục đối xứng

  • Hay chọn câu đúng tam giác đều có 3 trục đối xứng
    Tải app VietJack. Xem lời giải nhanh hơn!

Bài 1 trang 90 sách bài tập Toán lớp 6 Tập 1:

Trong các câu sau, câu nào đúng?

(A) Tam giác đều có 6 trục đối xứng;

(B) Hình chữ nhật với hai kích thước khác nhau có 4 trục đối xứng;

(C) Hình thang cân, góc ở đáy khác 90o, có đúng một trục đối xứng;

(D) Hình bình hành có hai trục đối xứng.

Quảng cáo

Lời giải:

(A). Sai vì tam giác đều có 3 trục đối xứng

(B). Sai vì hình chữ nhật có 2 trục đối xứng

(D). Sai vì hình bình hành không có trục đối xứng

(C). Đúng vì hình thang cân, góc ở đáy khác 90o, có đúng một trục đối xứng là đường thẳng đi qua trung điểm hai đáy của hình thang cân.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Đáp án cần chọn là: C

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 6 sách Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giới thiệu kênh Youtube VietJack

  • Hay chọn câu đúng tam giác đều có 3 trục đối xứng
    Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!

  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 6 có đáp án

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Nhóm học tập facebook miễn phí cho teen 2k10: fb.com/groups/hoctap2k10/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán lớp 6 Tập 1, Tập 2 hay nhất, chi tiết của chúng tôi được biên soạn bám sát SBT Toán 6 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Đáp án B

Mệnh đề đúng: 2;4

1. Tam giác đều có 3 trục đối xứng :Nối 1 đỉnh  với trung điểm cạnh đối diện

 và không có tâm đối xứng

2. Hình vuông có 4 trục đối xứng: 2 đường chéo và 2 đường thẳng nối trung điểm 2 cạnh đối diện.

và 1 tâm đối xứng: là giao của 2 đường chéo

3. Ngũ giác đều có 5 trục đối xứng: nối 1 đỉnh với trung điểm cạnh đối diện

và không có tâm đối xứng.

4. Lục giác đều có 6 trục đối xứng: 3 đường chéo, 3 đường thẳng nối trung điểm 2 cạnh đối diện

và 1 tâm đối xứng là giao các đường chéo

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Hãy chọn câu đúng. Trục đối xứng của hình thang cân là:

Cho hình vẽ. Hãy chọn câu đúng.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Hãy chọn câu sai.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Cho điểm $N\left( { - 2;3} \right)$. Khẳng định nào sau đây đúng 

Hình nào sau đây có nhiều trục đối xứng nhất ?

Khẳng định nào sau đây sai ?

Với bộ bài tập Trắc nghiệm Đối xứng trục Toán lớp 8 chọn lọc, có đáp án sẽ giúp học sinh hệ thống lại kiến thức bài học và ôn luyện để đạt kết quả cao trong các bài thi môn Toán lớp 8.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Bài 1: Hãy chọn câu đúng. Trục đối xứng của hình thang cân là:

A. Đường thẳng đi qua trung điểm hai cạnh bên của hình thang cân

B. Đường chéo của hình thang cân

C. Đường thẳng vuông góc với hai đáy của hình thang cân

D. Đường thẳng đi qua trung điểm hai đáy của hình thang cân

Hiển thị đáp án

Lời giải

Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

Đáp án cần chọn là: D

Bài 2: Hãy chọn câu đúng.

A. Hình thang cân có trục đối xứng là đường trung trực của hai đáy

B. Tam giác có trục đối xứng là đường trung tuyến

C. Tam giác có trục đối xứng là đường cao

D. Hình thang vuông có đối xứng là đường trung bình của nó

Hiển thị đáp án

Lời giải

Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

Như vậy hình thang cân có trục đối xứng là đường trung trực của hai đáy.

Đáp án cần chọn là: A

Bài 3: Hãy chọn câu đúng?

A. Tam giác đều có ba trục đối xứng

B. Tam giác cân có hai trục đối xứng

C. Hình tam giác có ba trục đối xứng

D. Hình thang cân có hai trục đối xứng

Hiển thị đáp án

Lời giải

+ Hình thang cân có trục đối xứng là đường thẳng đi qua trung điểm hai đáy nên hình thang cân có một trục đối xứng. Do đó A sai.

+ Tam giác cân có một trục đối xứng là đường trung trực hạ từ đỉnh cân nên B sai.

+ Tam giác thường thì không có trục đối xứng nên C sai.

+ Tam giác đều có ba trục đối xứng là ba đường trung trực của tam giác nên D đúng.

Đáp án cần chọn là: A

Bài 4: Cho tam giác ABC cân tại B, các đường trung tuyến AA’, BB’, CC’. Trục đối xứng của tam giác ABC là:

A. AA’

B. BB’

C. AA’ và CC’

D. CC’

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Do tam giác ABC cân tại B, nên đường trung tuyến BB’ đồng thời là đường trung trực.

Do đó BB’ là trục đối xứng của tam giác ABC.

Đáp án cần chọn là: B

Bài 5: Cho tam giác ABC cân tại A, các đường trung tuyến AA’, BB’, CC’. Trục đối xứng của tam giác ABC là:

A. AA’

B. BB’

C. AA’ và CC’

D. CC’

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Do tam giác ABC cân tại A, nên đường trung tuyến AA’ đồng thời là đường trung trực.

Do đó AA’ là trục đối xứng của tam giác ABC.

Đáp án cần chọn là: A

Bài 6: Hãy chọn câu sai:

A. Nếu hai góc đối xứng nhau qua một đường thẳng thì chúng bằng nhau

B. Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chúng bằng nhau

C. Nếu hai tam giác đối xứng nhau qua một đường thẳng thì chu vi của chúng bằng nhau.

D. Nếu hai tia đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.

Hiển thị đáp án

Lời giải

Vì hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau nên D sai.

Đáp án cần chọn là: D

Bài 7: Cho hình vẽ. Hãy chọn câu đúng:

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

A. Điểm đối xứng với A qua đường thẳng d là A.

B. Điểm đối xứng với K qua đường thẳng d là K

C. Điểm đối xứng với A qua đường thẳng d là K

D. Điểm đối xứng với Q qua đường thẳng d là Q.

Hiển thị đáp án

Lời giải

Từ hình vẽ ta có đường thẳng d là đường trung trực của đoạn thẳng AK nên điểm đối xứng với A qua đường thẳng d là K.

Đáp án cần chọn là: C

Bài 8: Cho hình vẽ. Hãy chọn câu sai.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

A. Điểm đói xứng với P qua đường thẳng QG là P’.

B. Điểm đối xứng với B qua đường thẳng QG là B’.

C. Điểm đối xứng với D qua đường thẳng QG là G.

D. Điểm đối xứng với G qua đường thẳng QG là G

Hiển thị đáp án

Lời giải

Từ hình vẽ ta có đường thẳng QG là đường trung trực của đoạn thẳng DD’, BB’, PP’ nên

Điểm đối xứng với P qua đường thẳng QG là P’ nên B đúng.

ĐIểm đối xứng với B qua đường thẳng QG là B’ nên B đúng.

Điểm đối xứng với D qua đường thẳng QG là D’ nên C sai.

Vì G Є QG nên điểm đối xứng với G qua QG là G nên D đúng.

Đáp án cần chọn là: C

Bài 9: Hãy chọn câu sai.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

A. Hai đoạn thẳng EB và E’B’ đối xứng nhau qua m.

B. Hai đoạn thẳng DB và D’B’ đối xứng nhau qua m.

C. Hai tam giác DEB và D’E’B’ đối xứng nhau qua m

D. Hai đoạn thẳng DE và D’B’ đối xứng nhau qua m.

Hiển thị đáp án

Lời giải

Từ hình vẽ ta có A và A’ đối xứng nhau qua đường thẳng m; B và B’ đối xứng nhau qua đường thẳng m; C và C’ đối xứng nhau qua đường thẳng m.

Suy ra hai đoạn thẳng EB và E’B’ đối xứng nhau qua m.

Hai đoạn thẳng DB và D’B’ đối xứng nhau qua m.

Hai tam giác DEB và D’E’B’ đối xứng nhau qua m.

Hai đoạn thẳng DE và D’E’ đối xứng nhau qua m nên D sai.

Đáp án cần chọn là: D

Bài 10: Cho hình vẽ, AD = AE, AG là trung trực của DE. Có bao nhiêu cặp đoạn thẳng đối xứng nhau qua trục AG (các đoạn thẳng thuộc đường thẳng AD, AE)? Chọn câu đúng.

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

A. 1

B. 2

C. 3

D. 4

Hiển thị đáp án

Lời giải

Từ giả thiết ta thấy ΔADE cân tại A có AG là đường cao nên AG cũng là đường trung trực của DE.

Nên điểm D và E đối xứng nhau qua AG.

Lại có BC // DE (cùng vuông với AG) nên suy ra

Hay chọn câu đúng tam giác đều có 3 trục đối xứng
 (định lý Ta-lét)

Mà  AD = AE (gt) ⇒ AB = AC

Do đó ΔABC cân tại A có AF là đường cao nên AF cũng là đường trung trực của BC.

Từ đó điểm B, C đối xứng nhau qua AG.

Như vậy:
+ Hai đoạn thẳng BD, CE đối xứng nhau qua AG.

+ Hai đoạn thẳng AB, AC đối xứng nhau qua AG

+ Hai đoạn thẳng AD, AE đối xứng nhau qua AG

Đáp án cần chọn là: C

Bài 11: Cho đoạn thẳng AB có độ dài 3cm và đường thẳng d. Đoạn thẳng A’B’ đối xứng với AB qua d. Độ dài đoạn thẳng A’B’ là:

A. 3cm

B. 6cm

D. 9cm

D. 12cm

Hiển thị đáp án

Lời giải

Vì đoạn thẳng A’B’ đối xứng với AB qua d nên A’B’ = AB = 3cm.

Đáp án cần chọn là: A

Bài 12: Cho đoạn thẳng AB có độ dài 6cm và đường thẳng d. Đoạn thẳng A’B’ đối xứng với AB qua d. Độ dài đoạn thẳng A’B’ là:

A. 3cm

B. 6cm

D. 9cm

D. 12cm

Hiển thị đáp án

Lời giải

Vì đoạn thẳng A’B’ đối xứng với AB qua d nên A’B’ = AB = 6cm.

Đáp án cần chọn là: B

Bài 13: Cho ΔABC và ΔA’B’C’ đối xứng nhau qua đường thẳng d biết AB = 4cm, BC = 7cm và chu vi của tam giác ABC = 17cm. Khi đó độ dài cạnh C’A’ của tam giác A’B’C’ là:

A. 17cm

B. 6cm

C. 7cm

D. 4cm

Hiển thị đáp án

Lời giải

+ Xét tam giác ABC có chu vi PABC = AB + AC + BC ⇒ PABC = 6cm.

+ Vì tam giác ABC và tam giác A’B’C’ đối xứng nhau qua đường thẳng d nên AC = A’C’ = 6cm

Đáp án cần chọn là: B

Bài 14: Cho ΔABC và ΔA’B’C’ đối xứng nhau qua đường thẳng d biết AB = 8cm, BC = 11cm và chu vi của tam giác ABC = 30 cm. Khi đó độ dài cạnh C’A’ của tam giác A’B’C’ là:

A. 16cm

B. 15cm

C. 8cm

D. 11cm

Hiển thị đáp án

Lời giải

+ Xét tam giác ABC có chu vi PABC = AB + AC + BC ⇒ PABC = 11cm.

+ Vì tam giác ABC và tam giác A’B’C’ đối xứng nhau qua đường thẳng d nên AC = A’C’ = 11cm

Đáp án cần chọn là: D

Bài 15: Cho tam giác ABC, trong đó AB = 11cm, AC = 15cm. Vẽ hình đối xứng với tam giác ABC qua trục là cạnh BC. Chu vi của tứ giác tạo thành là:

A. 52cm

B. 54cm

C. 26cm

D. 51cm

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Gọi A’ là điểm đối xứng với A qua BC. Khi đó tam giác A’BC đối xứng với tam giác ABC qua BC.

Tứ giác tạo thành là ABCA’.

Ta có A’B = AB = 11cm (vì A’B và AB đối xứng nhau qua BC)

A’C = AC = 15cm (vì A’C và AC đối xứng nhau qua BC)

Chu vi tứ giác ABCA’ là

P = AB + AC + A’B + A’C = 11 + 15 + 11 + 15 = 52 cm

Đáp án cần chọn là: A

Bài 16: Cho tam giác ABC, trong đó AB = 8cm, AC = 10cm. Vẽ hình đối xứng với tam giác ABC qua trục là cạnh BC. Chu vi của tứ giác tạo thành là:

A. 38cm

B. 54cm

C. 36cm

D. 18cm

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Gọi A’ là điểm đối xứng với A qua BC. Khi đó tam giác A’BC đối xứng với tam giác ABC qua BC.

Tứ giác tạo thành là ABCA’.

Ta có A’B = AB = 8cm (vì A’B và AB đối xứng nhau qua BC)

A’C = AC = 10cm (vì A’C và AC đối xứng nhau qua BC)

Chu vi tứ giác ABCA’ là

P = AB + AC + A’B + A’C = 8 + 10 + 8 + 10 = 36 cm

Đáp án cần chọn là: C

Bài 17: Cho hình vuông ABCD cạnh bằng a. M và N là hai điểm lưu động lần lượt trên cạnh AB và AD sao cho

Hay chọn câu đúng tam giác đều có 3 trục đối xứng
. Vẽ tia Cx vuông góc với CN, Cx cắt đường thẳng AB tại E.

1. Chọn kết luận đúng nhất.

A. E là điểm đối xứng của N qua CM

B. Tam giác CEN là tam giác cân tại C

C. Cả A, B đều đúng

D. Cả A, B đều sai

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Suy ra ΔCDN = ΔCBE (g.c.g)

Suy ra CN = CE

Xét tam giác CEN có CN = CE (cmt) nên tam giác CEN là tam giác cân tại C

Suy ra phân giác CM đồng thời là đường trung trực của NE.

Vậy E là điểm đối xứng của N qua CM

Đáp án cần chọn là: C

2. Tính chu vi của tam giác AMN theo a.

A. 4a

B. 3a

C. a

D. 2a

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Ta có: ΔCMN = ΔCME (do tính đối xứng qua CM)

Nên MN = ME

Suy ra chu vi tam giác AMN là:

AM + AN + MN = AM + AN + ME

= AM + AN + MB + BE = AM + AN + MB + ND (vì ΔCDN = ΔCBE (theo câu trước) nên BE = ND)

= (AM + MB) + (AN + ND)

Vậy chu vi tam giác AMN bằng 2a.

Đáp án cần chọn là: D

Bài 18: Cho hai điểm A, B nằm trên cùng một nửa mặt phẳng bờ là đường thẳng d. Gọi B’ là điểm đối xứng của B qua đường thẳng d. Tìm trên đường thẳng d điểm M sao cho tổng MA + MB nhỏ nhất. Chọn khẳng định đúng nhất.

A. M là giao điểm của đoạn thẳng AB và đoạn thẳng d.

B. M là giao điểm của đoạn AB’ và đường thẳng d.

C. Cả A, B đều đúng.

D. Cả A, B đều sai.

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Gọi B’ là điểm đối xứng của B qua đường thẳng d. B’ cố định.

Ta có: MB = MB’ (tính chất đối xứng trục).

Xét ba điểm M, A, B’ ta có MA + MB’ ≥ AB’

Do đó MA + MB ≥ AB’

Dấu “=” xảy ra khi và chỉ khi A, M, B thẳng hang theo thứ tự đó hay M là giao điểm của đoạn AB’ và đường thẳng d.

Vậy khi M ≡ M’ là giao điểm của đoạn thẳng AB’ và đường thẳng d thì tổng MA + MB nhỏ nhất, trong đó B’ là điểm đối xứng của B qua d.

Đáp án cần chọn là: B

Bài 19: Trên tia phân giác góc ngoài tại đỉnh C của tam giác ABC, lấy điểm M (M khác C). Chọn câu đúng.

A. MA + MB = AC + BC

B. MA + MB > AC + BC

C. MA + MB < AC + BC

D. Chưa đủ điều kiện để so sánh

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Trên tia đối của tia CB lấy điểm A’ sao cho CA = CA’

Khi đó ta có: ΔCAA’ cân tại A có CM là phân giác góc ACA’ nên CM cũng là đường trung trực của AA’.

Từ đó ta có: MA = MA’

Nên MA + MB = MA’ + MB

Xét tam giác MA’B có MA’ +MB > A’B ⇔ MA + MB > A’C + BC

Hay MA + MB > AC + BC (vì CA = CA’)

Đáp án cần chọn là: B

Bài 20: Cho tam giác ABC có

Hay chọn câu đúng tam giác đều có 3 trục đối xứng
, d là trung trực của cạnh AB. Trên cạnh AC, lấy điểm M sao cho AM = BC và gọi M’ là điểm đối xứng của M qua d.

1. Tam giác M’BC là tam giác gì? Chọn đáp án đúng nhất.

A. đều

B. cân tại B

C. cân tại C

D. vuông cân tại M’

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Do tính chất đối xứng qua d, ta có AM = BM’

Mà AM = BC (gt) nên BM’ = BC

Ta lại có:

Hay chọn câu đúng tam giác đều có 3 trục đối xứng
 (do MA đối xứng với M’B qua d)

Suy ra:

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Xét tam giác M’BC có BM’ = BC,

Hay chọn câu đúng tam giác đều có 3 trục đối xứng
do đó tam giác M’BC là tam giác đều

Đáp án cần chọn là: A

2. Tính góc BMC.

A. 450

B. 300

C. 600

D. 400

Hiển thị đáp án

Lời giải

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Hay chọn câu đúng tam giác đều có 3 trục đối xứng

Đáp án cần chọn là: B

Tải thêm tài liệu liên quan đến bài viết Hay chọn câu đúng tam giác đều có 3 trục đối xứng