Light is focused on the retina by the

The eye is a complex organ that manipulates light much like a camera does; it has lenses to change the focus and a sensor to recognize intensity and color.

How Does the Eye Focus? Starting with the Cornea

The first layer of the eye that light hits is the cornea, the surface of the eye. The cornea is a dome-shaped lens that starts the process of focusing light, contributing approximately two-thirds of the eye's focusing power. But the cornea is like the lens of eyeglasses - it always refracts light the same amount, unlike the lens of a camera which can focus at different depths.

The shape of the cornea is maintained by the aqueous humour, a gel that lies between the cornea and the lens.

The Pupil and Iris Regulate Amount of Light

The iris is the colorful part of the eye. The pupil, the black spot in the middle of the iris, is actually just a hole in the iris, which can contract or relax to adjust the size of the pupil. In low light, the pupil expands to allow more light into the eye. In bright light, it contracts to protect the eye and increase contrast.

The Lens Focuses Light

Behind the pupil lies the crystalline lens, which is responsible for focusing light. The lens can change its focal length, like a camera. This is what allows you to focus close up on a book, or far away at the horizon, but not both at the same time. To switch from one to the other, the lens actually bends and changes shape because of contractions in the cilliary muscles.

A healthy lens is critical to good vision. As people age, the lens can become cloudy, causing a cataract, or stiff, causing presbyopia. When the lens becomes stiff, the cilliary muscles can no longer change the shape of the lens to focus on up close objects.

The Retina Detects Light

From the crystalline lens, light travels through another gel known as the vitreous humor, which maintains the shape of the eye, to the retina in the back of the eye. The retina contains light-receptor cells known as rods and cones. Rods are very sensitive and simply detect light, giving us our nearly-colorless night vision, while cones detect different colors. Cones are concentrated in the fovea, a pit in the center of the retina, providing very sharp central vision.

Oddities of the Retina: Flipped and Holey

The lens projects an image onto the retina, but it is rotated 180 degrees (upside down and backwards). If you flip upside down to watch a movie, what you see is actually what is being projected onto the retinas of your bemused friends. This is because the shape of the lens causes light to converge through a single point inside the lens, emerging out the back like light leaving a projector.

There is also a gap in your vision known as the blind spot, where blood vessels and nerves pass through the retina. So why don't you see a flipped world with a hole in it? The brain corrects for both of these, providing you with a properly oriented image and filling in the blind spot with the surrounding color.

To recap: light is partially focused when it passes through the cornea, then travels through the aqueous humour to the crystalline lens, which lets the eye focus on different depths. The light converges in the lens and travels out the other side flipped, traveling through the vitreous humour to the retina on the inner back surface of the eye, where rods and cones detect light. Then your brain presents a coherent, correctly-oriented image.

Ready for the test?

Light is focused on the retina by the

  • Choroid
    Layer containing blood vessels that lines the back of the eye and is located between the retina (the inner light-sensitive layer) and the sclera (the outer white eye wall).  
  • Ciliary Body
    Structure containing muscle and is located behind the iris, which focuses the lens.
  • Cornea
    The clear front window of the eye which transmits and focuses (i.e., sharpness or clarity) light into the eye. Corrective laser surgery reshapes the cornea, changing the focus.
  • Fovea
    The center of the macula which provides the sharp vision.
  • Iris
    The colored part of the eye which helps regulate the amount of light entering the eye. When there is bright light, the iris closes the pupil to let in less light. And when there is low light, the iris opens up the pupil to let in more light.
  • Lens
    Focuses light rays onto the retina. The lens is transparent, and can be replaced if necessary. Our lens deteriorates as we age, resulting in the need for reading glasses. Intraocular lenses are used to replace lenses clouded by cataracts.
  • Macula
    The area in the retina that contains special light-sensitive cells. In the macula these light-sensitive cells allow us to see fine details clearly in the center of our visual field. The deterioration of the macula is a common condition as we get older (age related macular degeneration or ARMD).
  • Optic Nerve
    A bundle of more than a million nerve fibers carrying visual messages from the retina to the brain. (In order to see, we must have light and our eyes must be connected to the brain.) Your brain actually controls what you see, since it combines images. The retina sees images upside down but the brain turns images right side up. This reversal of the images that we see is much like a mirror in a camera. Glaucoma is one of the most common eye conditions related to optic nerve damage.
  • Pupil
    The dark center opening in the middle of the iris. The pupil changes size to adjust for the amount of light available (smaller for bright light and larger for low light). This opening and closing of light into the eye is much like the aperture in most 35 mm cameras which lets in more or less light depending upon the conditions.
  • Retina
    The nerve layer lining the back of the eye. The retina senses light and creates electrical impulses that are sent through the optic nerve to the brain.
  • Sclera
    The white outer coat of the eye, surrounding the iris.
  • Vitreous Humor
    The, clear, gelatinous substance filling the central cavity of the eye.

How the Eye Works

The five senses include sight, sound, taste, hearing and touch. Sight, like the other senses is closely related to other parts of our anatomy. The eye is connected to the brain and dependent upon the brain to interpret what we see.

How we see depends upon the transfer of light. Light passes through the front of the eye (cornea) to the lens. The cornea and the lens help to focus the light rays onto the back of the eye (retina). The cells in the retina absorb and convert the light to electrochemical impulses which are transferred along the optic nerve and then to the brain.

The eye works much the same as a camera. The shutter of a camera can close or open depending upon the amount of light needed to expose the film in the back of the camera. The eye, like the camera shutter, operates in the same way. The iris and the pupil control how much light to let into the back of the eye. When it is very dark, our pupils are very large, letting in more light. The lens of a camera is able to focus on objects far away and up close with the help of mirrors and other mechanical devices. The lens of the eye helps us to focus but sometimes needs some additional help in order to focus clearly. Glasses, contact lenses, and artificial lenses all help us to see more clearly. 

How is light focused on the retina quizlet?

Light is focused on the retina by the cornea, pupil and lens, and the retina transduces this visual image into a code that the brain can read.

Where the most light gets focused on your retina?

In the middle of the retina is a small dimple called the fovea or fovea centralis. It is the center of the eye's sharpest vision and the location of most color perception. "A thin layer (about 0.5 to 0.1mm thick) of light receptor cells covers the inner surface of the choroid.