Python calculate bearing between two coordinates

I am attempting to calculate the bearing between two lat/long.

I don't have a question regarding the function/formula per se,

provided:

def get_bearing(lat1, long1, lat2, long2):
    dLon = (long2 - long1)

    y = math.sin(dLon) * math.cos(lat2)
    x = math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dLon)

    brng = math.atan2(y, x)

    brng = np.rad2deg(brng)

    return brng

the problem is that the result isn't what is expected.

The intended usage of the function returns the bearing between two lat/long pairs in a (very long) list i.e.

    lat1 = path[int(len(path) * location / 1000)][0]
    lat2 = path[int(len(path) * location / 1000) + 1][0]
    lng1 = path[int(len(path) * location / 1000)][1]
    lng2 = path[int(len(path) * location / 1000) + 1][1]

The bearing result then alters the view orientation of the plot where bearing can assume a value in the range [-180, 180]. Ideally, the result would appear such that the line formed between lat1, lng1 and lat2, lng2 is perfectly "vertical" in the plot (lat/lon annotations are switched in plot), see below

Python calculate bearing between two coordinates

Python calculate bearing between two coordinates

I am hoping that someone might be able to deduce the problem from the bearing returned from the function and what the expected bearing should be. A few instances below:

Current Location: 30.07134 -97.23076
Next in path: 30.0709 -97.22907
Calculated Bearing: 88.39967863143139
Expected Bearing: ~-70.67

Current Location: 29.91581 -96.85068
Next in path: 29.91556 -96.85021
Calculated Bearing: 118.9170342272798
Expected Bearing: ~122.67

Current Location: 29.69419 -96.53487
Next in path: 29.69432 -96.53466
Calculated Bearing 141.0271357781952
Expected Bearing: ~56

Current Location: 29.77357 -96.07924
Next in path: 29.77349 -96.07876
Calculated Bearing 165.24612555483893
Expected Bearing: ~104

Happy to provide additional information, thanks in advance for any/all help.

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters

# LICENSE: public domain
def calculate_initial_compass_bearing(pointA, pointB):
"""
Calculates the bearing between two points.
The formulae used is the following:
θ = atan2(sin(Δlong).cos(lat2),
cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlong))
:Parameters:
- `pointA: The tuple representing the latitude/longitude for the
first point. Latitude and longitude must be in decimal degrees
- `pointB: The tuple representing the latitude/longitude for the
second point. Latitude and longitude must be in decimal degrees
:Returns:
The bearing in degrees
:Returns Type:
float
"""
if (type(pointA) != tuple) or (type(pointB) != tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = math.radians(pointA[0])
lat2 = math.radians(pointB[0])
diffLong = math.radians(pointB[1] - pointA[1])
x = math.sin(diffLong) * math.cos(lat2)
y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1)
* math.cos(lat2) * math.cos(diffLong))
initial_bearing = math.atan2(x, y)
# Now we have the initial bearing but math.atan2 return values
# from -180° to + 180° which is not what we want for a compass bearing
# The solution is to normalize the initial bearing as shown below
initial_bearing = math.degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing

How do you find the bearing between two coordinates?

Here is the formula to find the second point, when first point, bearing and distance is known: latitude of second point = la2 = asin(sin la1 * cos Ad + cos la1 * sin Ad * cos θ), and. longitude of second point = lo2 = lo1 + atan2(sin θ * sin Ad * cos la1 , cos Ad – sin la1 * sin la2)

How do you find the angle between two points in Python?

The Python ATAN2 function is one of the Python Math function which is used to returns the angle (in radians) from the X -Axis to the specified point (y, x)..
Since the gun and the target are defined relative to implicit x, y axes then tangent = (y2-y1)/(x2-x1) would be used. ... .
You right, atan2 is a possible shortcut..

How do you calculate bearing headings?

How to Calculate Bearing.
True Bearing – Ship's Heading = Relative Bearing..
Relative Bearing + Ships Heading = True Bearing..
225 – 59 = 166°.