Cho tập A 2, 3, 4, 5 từ tập A có thể lập được bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau

Cho tập hợp A={0;1;2;3;4;5;6}. Có bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau được lập thành từ các chữ số của tập \[A\], đồng thời có đúng 2 chữ số lẻ và 2 chữ số lẻ đó đứng cạnh nhau.

Lời giải

adsense


Vì chữ số lẻ đứng kề nhau nên ta gom 2 số  lẻ thành số M, có \[C_{3}^{2}\] bộ M.
Gọi số cần chọn có dạng \[\overline{abcd}\] với d số chẳn.
` ● Trường hợp 1. d=0, suy ra d có 1 cách chọn.
+] Có 3 vị trí để xếp chữ số M, ứng với mỗi cách xếp M có 2! cách xếp hai phần tử trong M.
+] Chọn thứ tự 2 chữ số từ tập {2;4;6} để xếp vào 2 vị trí trống còn lại, có \[A_{3}^{2}\] cách.
Do đó trường hợp này có \[1.3.2!.C_{3}^{2} = 36\]số.
● Trường hợp 2. d THUỘC {2;4;6}, suy ra d có 3 cách chọn.

 

Lời giải chi tiết:

Giả sử số tự nhiên chẵn gồm 3 chữ số khác nhau là: \[\overline {abc} \,\,\left[ {a \ne 0} \right]\]

Khi đó,  \[c \in \left\{ {0;2;4;6;8} \right\}\]

+] Nếu \[c = 0\] có 1 cách chọn

\[a\] có 9 cách chọn

\[b\] có 8 cách chọn

\[ \Rightarrow \] Có: \[1.9.8 = 72\] [số]

+]  Nếu \[c \in \left\{ {2;4;6;8} \right\}\] có 4 cách chọn

\[a\] có 8 cách chọn

\[b\] có 8 cách chọn

\[ \Rightarrow \] Có: \[4.8.8 = 256\] [số]

Vậy, số số tự nhiên chẵn gồm 3 chữ số khác nhau là: \[72 + 256 = 328\][số].

Chọn: A

Chủ Đề