Ma trận tam giác là gì

I. Các định nghĩa về ma trận:

1. Định nghĩa 1.1:

Một ma trận A loại [cấp] m x n trên trường K [K – là trường thực R, hoặc phức C] là một bảng chữ nhật gồm m x n phần tử trong K được viết thành m dòng và n cột như sau:

Trong đó là phần tử ở vị trí dòng i, cột j của A. Đôi khi A được viết ngắn gọn là hay

Các ma trận thường được ký hiệu bởi A, B, C và tập hợp tất cả các ma trận loại m x n trên trường K được ký hiệu bởi Mm x n[K]

Ví dụ 1.1: là ma trận cấp 2 x 3. là ma trận cấp 3 x 2.

Ví dụ 1.2: Viết ma trận cấp 4 x 4 biết:

Nhận xét:

– Ma trận A có thể xác định trực tiếp bằng cách liệt kê các phần tử, cũng có thể được xác định theo công thức tổng quát.

– Ma trận không cấp m x n [ma trận zero], ký hiệu 0mxn là ma trận mà mọi phần tử đều bằng 0.

– Nếu m = n thì A được gọi là ma trận vuông cấp n trên K. Tập hợp tất cả các ma trận vuông cấp n trên K được ký hiệu là Mn[K]

– Ma trận cấp 1 x n được gọi là ma trận hàng; ma trận cấp m x 1 được gọi là ma trận cột

– Nếu A là ma trận vuông cấp n, thì đường chứa các phần tử a11, a22, a33,…, ann được gọi là đường chéo chính của A.

2. Định nghĩa 1.2: Cho . Khi đó:

– Nếu [nghĩa là tất cả các phần tử bên ngoài đường chéo chính của A đều bằng 0] thì ta nói A là ma trận đường chéo.

– Ta thường dùng ký hiệu diag[a1, a2,…, an] để chỉ một ma trận đường chéo cấp n có các phần tử trên đường chéo lần lượt là a1, a2, …, an

– Ma trận chéo có [nghĩa là các phần tử trên đường chéo chính đều bằng 1] được gọi là ma trận đơn vị. Ký hiệu: In

– Một ma trận đường chéo với tất cả các phần tử trên đường chéo chính đều bằng nhau được gọi là ma trận vô hướng.

– Nếu [nghĩa là tất cả các phần tử nằm bên dưới đường chéo chính của A đều bằng 0] thì ta nói A là ma trận tam giác trên.

– Nếu [nghĩa là tất cả các phần tử nằm bên trên đường chéo chính của A đều bằng 0] thì ta nói A là ma trận tam giác dưới.

– Ma trận tam giác trên hay tam giác dưới được gọi chung là ma trận tam giác.

II. Các phép toán trên ma trận:

1. Định nghĩa 2.1 [hai ma trận bằng nhau]:

Cho .

Ta nói A = B khi và chỉ khi:

Ví dụ: Với Thì

Hai ma trận không thể bằng nhau do không cùng cấp.

2. Định nghĩa 2.2 [Ma trận chuyển vị]:

Cho . Ta nói:

chuyển vị của A [ký hiệu B = AT] nếu:

Ví dụ: Nếu thì

3. Tính chất 2.1:

Cho . Khi đó:

1.

2.

Ghi chú:

Cho . Khi đó, nếu AT = A thì ta nói A là ma trận đối xứng; nếu AT = – A thì ta nói A là ma trận phản xứng.

Ví dụ: là ma trận đối xứng. là ma trận phản xứng.

Nhận xét: Nếu B là ma trận phản xứng thì các phần tử trên đường chéo chính của B đều bằng 0.

4. Phép nhân một số với một ma trận:

Cho Ta gọi tích a và A [ký hiệu aA] là một ma trận được xác định bởi:

– Nếu a = -1 thì ta ký hiệu [-1].A bởi -A và gọi là ma trận đối của A.
5. Cộng hai ma trận:

Cho

Ta gọi tổng của A và B [A + B] là một ma trận được xác định bởi:

Tổng của A + [-B] được ký hiệu bởi A – B và gọi là hiệu của ma trận A và B.
6. Tính chất 2.2:

Cho . Ta có: [ab].A = a.[bA]; [aA]T = a.[AT]

7. Ví dụ: Xác định các giá trị của x, y sao cho:

8. Định lý 2.1:

Cho . Khi đó:

1.Tổng hai ma trận có tính giao hoán: A + B = B + A

2.Tổng hai ma trận có tính kết hợp: A + [B + C] = [A + B] + C

3.Tồn tại ma trận 0mxn sao cho: A + 0 = 0 + A = A

4. Tồn tại ma trận đối của A sao cho: A + [- A] = [- A] + A = 0

5.Phép nhân vô hướng có tính phân phối: α[A+B] = αA + αB ;[α +β]A = αA + βA

6.Chuyển vị của tổng bằng tổng các chuyển vị:[A + B]T = AT + BT

Video liên quan

Chủ Đề