Python xóa chuỗi con chung

Một số lớp bộ sưu tập có thể thay đổi. Các phương thức cộng, trừ hoặc sắp xếp lại các thành viên của chúng tại chỗ và không trả về một mục cụ thể, không bao giờ trả về chính thể hiện của bộ sưu tập nhưng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; . Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
34

Kiểm tra giá trị thực¶

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị thực, để sử dụng trong điều kiện

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
35 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
36 hoặc dưới dạng toán hạng của phép toán Boolean bên dưới

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó định nghĩa một phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
37 trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 hoặc một phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
39 trả về 0 khi được gọi với đối tượng. 1 Dưới đây là hầu hết các đối tượng tích hợp được coi là sai

  • hằng số được xác định là sai.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    38

  • số không của bất kỳ loại số nào.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    43,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    44,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    45,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    46

  • trình tự và bộ sưu tập trống.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    47,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    48,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    49,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    50,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    51,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    52

Các phép toán và hàm dựng sẵn có kết quả Boolean luôn trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 nếu sai và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu đúng, trừ khi có quy định khác. [Ngoại lệ quan trọng. các phép toán Boolean
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
57 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
58 luôn trả về một trong các toán hạng của chúng. ]

Phép toán Boolean —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
58,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
57,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
61¶

Đây là các phép toán Boolean, được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
62

nếu x sai, thì y, ngược lại x

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
63

nếu x sai, thì x, ngược lại y

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
64

nếu x sai, thì

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56, ngược lại thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

[3]

ghi chú

  1. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất sai

  2. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất đúng

  3. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    61 có mức ưu tiên thấp hơn so với các toán tử không phải Boolean, do đó,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    68 được hiểu là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    69 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    70 là một lỗi cú pháp

So sánh¶

Có tám thao tác so sánh trong Python. Tất cả chúng đều có cùng mức độ ưu tiên [cao hơn so với các phép toán Boolean]. So sánh có thể được xâu chuỗi tùy ý;

Bảng này tóm tắt các hoạt động so sánh

Hoạt động

Nghĩa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74

hoàn toàn ít hơn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
75

nhỏ hơn hoặc bằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
76

tuyệt đối lớn hơn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77

lớn hơn hoặc bằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78

công bằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
79

không công bằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80

nhận dạng đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
81

danh tính đối tượng phủ định

Các đối tượng thuộc các loại khác nhau, ngoại trừ các loại số khác nhau, không bao giờ so sánh bằng nhau. Toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78 luôn được xác định nhưng đối với một số loại đối tượng [ví dụ: đối tượng lớp] tương đương với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80. Các toán tử
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
75,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
76 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77 chỉ được xác định khi chúng có ý nghĩa;

Các thể hiện không giống nhau của một lớp thường được so sánh là không bằng nhau trừ khi lớp đó định nghĩa phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
89

Các thể hiện của một lớp không thể được sắp thứ tự đối với các thể hiện khác của cùng một lớp hoặc các loại đối tượng khác, trừ khi lớp đó định nghĩa đủ các phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
91,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
92 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
93 [nói chung,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
89 là đủ, nếu

Không thể tùy chỉnh hành vi của các toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
80 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
81;

Hai thao tác khác có cùng mức độ ưu tiên cú pháp,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99, được hỗ trợ bởi các loại có thể lặp lại hoặc triển khai phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900.

Các loại số —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903¶

Có ba loại số riêng biệt. số nguyên, số dấu phẩy động và số phức. Ngoài ra, Booleans là một kiểu con của số nguyên. Số nguyên có độ chính xác không giới hạn. Số dấu phẩy động thường được triển khai bằng cách sử dụng double trong C; . Số phức có phần thực và phần ảo, mỗi phần là một số dấu chấm động. Để trích xuất các phần này từ một số phức z, hãy sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
905 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
906. [Thư viện chuẩn bao gồm các loại số bổ sung
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907, dành cho số hữu tỉ và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908, dành cho số dấu phẩy động với độ chính xác do người dùng xác định. ]

Các số được tạo bởi các chữ số hoặc là kết quả của các hàm và toán tử tích hợp. Các số nguyên không trang trí [bao gồm cả số hex, bát phân và nhị phân] mang lại số nguyên. Chữ số có chứa dấu thập phân hoặc dấu mũ mang lại số dấu phẩy động. Việc thêm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
909 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
910 vào một chữ số sẽ tạo ra một số ảo [một số phức có phần thực bằng 0] mà bạn có thể thêm vào một số nguyên hoặc dấu phẩy động để có được một số phức có phần thực và phần ảo

Python hỗ trợ đầy đủ số học hỗn hợp. khi toán tử số học nhị phân có toán hạng thuộc các loại số khác nhau, toán hạng có loại "hẹp hơn" được mở rộng sang toán hạng kia, trong đó số nguyên hẹp hơn dấu phẩy động, hẹp hơn phức hợp. So sánh giữa các số thuộc các loại khác nhau hoạt động như thể các giá trị chính xác của các số đó đang được so sánh. 2

Các hàm tạo

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
911,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
912 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
913 có thể được sử dụng để tạo các số thuộc một loại cụ thể

Tất cả các loại số [ngoại trừ phức tạp] đều hỗ trợ các phép toán sau [để biết mức độ ưu tiên của các phép toán, hãy xem Mức độ ưu tiên của toán tử ].

Hoạt động

Kết quả

ghi chú

tài liệu đầy đủ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
914

tổng của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
915

sự khác biệt của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
916

sản phẩm của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
917

thương của x và y

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
918

thương số sàn của x và y

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
919

phần còn lại của

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
917

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
921

x phủ định

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
922

x không thay đổi

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
923

giá trị tuyệt đối hoặc độ lớn của x

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
924

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
925

x chuyển thành số nguyên

[3][6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
911

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
927

x được chuyển đổi thành dấu phẩy động

[4][6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
912

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
929

số phức có phần thực là phần ảo. tôi mặc định là không

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
913

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
931

liên hợp của số phức c

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
932

cặp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
933

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
934

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
935

x lũy thừa y

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
936

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
937

x lũy thừa y

[5]

ghi chú

  1. Còn gọi là phép chia số nguyên. Giá trị kết quả là một số nguyên, mặc dù loại kết quả không nhất thiết phải là int. Kết quả luôn được làm tròn về phía âm vô cực.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    938 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    940 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    942 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    944 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42

  2. Không dành cho số phức. Thay vào đó hãy chuyển đổi thành float bằng cách sử dụng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    924 nếu thích hợp

  3. Chuyển đổi từ dấu phẩy động sang số nguyên có thể làm tròn hoặc cắt ngắn như trong C;

  4. float cũng chấp nhận các chuỗi “nan” và “inf” với tiền tố tùy chọn “+” hoặc “-” cho Không phải là Số [NaN] và vô cực dương hoặc âm

  5. Python định nghĩa

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    949 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    950 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    55, như thường thấy đối với các ngôn ngữ lập trình

  6. Các chữ số được chấp nhận bao gồm các chữ số

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    953 hoặc bất kỳ mã Unicode tương đương nào [điểm mã với thuộc tính
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    954]

    Xem https. //www. unicode. tổ chức/Công khai/14. 0. 0/ucd/đã trích xuất/DerivedNumericType. txt để biết danh sách đầy đủ các điểm mã với thuộc tính

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    954

Tất cả các loại

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
956 [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902] cũng bao gồm các hoạt động sau

Hoạt động

Kết quả

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
959

x bị cắt ngắn thành

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
961

x làm tròn đến n chữ số, làm tròn một nửa thành chẵn. Nếu n bị bỏ qua, nó mặc định là 0

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
962

lớn nhất

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960 '-0b100101' s = s.lstrip['-0b'] # remove leading zeros and minus sign return len[s] # len['100101'] --> 6 964

ít nhất

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
960 >= x

Để biết các phép toán số bổ sung, hãy xem các mô-đun

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
966 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
967

Phép toán Bitwise trên các kiểu số nguyên¶

Hoạt động bitwise chỉ có ý nghĩa đối với số nguyên. Kết quả của các hoạt động theo bit được tính toán như thể được thực hiện trong phần bù hai với số lượng bit dấu vô hạn

Tất cả các ưu tiên của các phép toán bitwise nhị phân đều thấp hơn các phép toán số và cao hơn các phép so sánh;

Bảng này liệt kê các hoạt động bitwise được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
971

bitwise hoặc của x và y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
972

loại trừ theo bit hoặc của x và y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
973

bitwise và của x và y

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
974

x dịch sang trái n bit

[1][2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
975

x dịch sang phải n bit

[1][3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
976

các bit của x đảo ngược

ghi chú

  1. Số ca âm là bất hợp pháp và làm tăng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977

  2. Dịch trái n bit tương đương với phép nhân với

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    978

  3. Dịch chuyển sang phải n bit tương đương với phép chia sàn cho

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    978

  4. Thực hiện các phép tính này với ít nhất một bit mở rộng dấu phụ trong biểu diễn phần bù của hai hữu hạn [độ rộng bit làm việc là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    980 trở lên] là đủ để có được kết quả tương tự như thể có vô số bit dấu

Các phương thức bổ sung trên các kiểu số nguyên¶

Kiểu int triển khai lớp cơ sở trừu tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
981 abstract base class . Ngoài ra nó còn cung cấp thêm một số phương pháp.

int. bit_length[]

Trả về số bit cần thiết để biểu diễn một số nguyên ở dạng nhị phân, không bao gồm dấu và các số 0 ở đầu

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
51

Chính xác hơn, nếu

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 khác 0, thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
983 là số nguyên dương duy nhất
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
984 sao cho
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
985. Tương tự, khi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
923 đủ nhỏ để có logarit được làm tròn chính xác, thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
987. Nếu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 bằng 0, thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
983 trả về
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6

Mới trong phiên bản 3. 1

int. bit_count[]

Trả về số đơn vị trong biểu diễn nhị phân của giá trị tuyệt đối của số nguyên. Đây còn được gọi là số lượng dân số. Thí dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
63

New in version 3. 10

int. to_bytes[length=1 , byteorder='big' , * , signed=False]

Return an array of bytes representing an integer

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
64

The integer is represented using length bytes, and defaults to 1. An

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 is raised if the integer is not representable with the given number of bytes

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
994, the most significant byte is at the end of the byte array

The signed argument determines whether two’s complement is used to represent the integer. If signed is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 and a negative integer is given, an
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 is raised. The default value for signed is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

The default values can be used to conveniently turn an integer into a single byte object. However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
73

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74

New in version 3. 2

Changed in version 3. 11. Added default argument values for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
999 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6300.

classmethod int. from_bytes[bytes , byteorder='big' , * , signed=False]

Return the integer represented by the given array of bytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
77

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
994, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6304 as the byte order value

Đối số có dấu cho biết liệu phần bù hai có được sử dụng để biểu diễn số nguyên hay không

Equivalent to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
82

New in version 3. 2

Đã thay đổi trong phiên bản 3. 11. Đã thêm giá trị đối số mặc định cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6300.

int. as_integer_ratio[]

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số nguyên ban đầu và có mẫu số dương. Tỷ lệ nguyên của các số nguyên [số nguyên] luôn là số nguyên làm tử số và

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 làm mẫu số

Mới trong phiên bản 3. 8

Phương pháp bổ sung trên Float¶

Kiểu float triển khai

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
956 lớp cơ sở trừu tượng . float cũng có các phương thức bổ sung sau.

nổi. as_integer_ratio[]

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số float ban đầu và có mẫu số dương. Tăng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991 trên vô số và một
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 trên NaN

nổi. is_integer[]

Trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu đối tượng float là hữu hạn với giá trị nguyên và ngược lại là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90

Hai phương pháp hỗ trợ chuyển đổi sang và từ các chuỗi thập lục phân. Vì số float của Python được lưu trữ bên trong dưới dạng số nhị phân, nên việc chuyển đổi số float thành hoặc từ chuỗi thập phân thường liên quan đến một lỗi làm tròn nhỏ. Ngược lại, các chuỗi thập lục phân cho phép biểu diễn và đặc tả chính xác các số dấu phẩy động. Điều này có thể hữu ích khi gỡ lỗi và trong công việc số

nổi. hex[]

Trả về biểu diễn của số dấu phẩy động dưới dạng chuỗi thập lục phân. Đối với các số dấu phẩy động hữu hạn, cách biểu diễn này sẽ luôn bao gồm một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6312 ở đầu và một
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6313 ở cuối và số mũ

phương thức lớp phao. từ hex[s]

Phương thức lớp để trả về số float được biểu thị bằng chuỗi thập lục phân s. Chuỗi s có thể có khoảng trắng ở đầu và cuối

Lưu ý rằng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6314 là một phương thức thể hiện, trong khi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6315 là một phương thức lớp

Một chuỗi thập lục phân có dạng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
0

trong đó tùy chọn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6316 có thể bằng một trong hai
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
970,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6319 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6320 là chuỗi các chữ số thập lục phân và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6321 là số nguyên thập phân có dấu tùy chọn ở đầu. Trường hợp không đáng kể và phải có ít nhất một chữ số thập lục phân trong số nguyên hoặc phân số. Cú pháp này tương tự như cú pháp quy định tại mục 6. 4. 4. 2 của tiêu chuẩn C99 và cả cú pháp được sử dụng trong Java 1. 5 trở đi. Cụ thể, đầu ra của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6314 có thể được sử dụng dưới dạng ký tự dấu phẩy động thập lục phân trong mã C hoặc Java và các chuỗi thập lục phân được tạo bởi ký tự định dạng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6323 của C hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6324 của Java được chấp nhận bởi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6315

Lưu ý rằng số mũ được viết dưới dạng thập phân chứ không phải thập lục phân và nó mang lại sức mạnh của 2 để nhân hệ số. Ví dụ: chuỗi thập lục phân

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6326 đại diện cho số dấu phẩy động
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6327 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6328

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
1

Áp dụng chuyển đổi ngược lại cho

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6328 sẽ cho một chuỗi thập lục phân khác biểu thị cùng một số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
2

Băm các loại số¶

Đối với các số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
982 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6331, có thể thuộc các loại khác nhau, yêu cầu là ____16332 bất cứ khi nào ____16333 [xem tài liệu về phương pháp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6334 để biết thêm chi tiết]. Để dễ triển khai và hiệu quả trên nhiều loại số khác nhau [bao gồm
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907] Hàm băm của Python cho các loại số dựa trên một hàm toán học duy nhất được xác định cho bất kỳ số hữu tỷ nào và do đó áp dụng cho tất cả các phiên bản của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và . Về cơ bản, chức năng này được đưa ra bởi giảm modulo
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343 cho một số nguyên tố cố định
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343. Giá trị của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6343 được cung cấp cho Python dưới dạng thuộc tính
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6346 của
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6347

Chi tiết triển khai CPython. Hiện tại, số nguyên tố được sử dụng là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6348 trên các máy có độ dài C 32 bit và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6349 trên các máy có độ dài C 64 bit

Dưới đây là các quy tắc chi tiết

  • Nếu

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 là một số hữu tỉ không âm và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 không chia hết cho
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343, hãy định nghĩa
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6354, trong đó
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6355 cho số nghịch đảo của
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 theo modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343

  • Nếu

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 là một số hữu tỉ không âm và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 chia hết cho
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343 [nhưng
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6361 thì không] thì
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6351 không có modulo nghịch đảo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6343 và quy tắc trên không áp dụng;

  • Nếu

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6350 là một số hữu tỷ âm, hãy xác định
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6353 là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6368. Nếu kết quả băm là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, hãy thay thế nó bằng
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6370

  • Các giá trị cụ thể

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6365 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6372 được sử dụng làm giá trị băm cho vô cực dương hoặc vô cực âm [tương ứng]

  • Đối với số

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    903
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6374, giá trị băm của phần thực và phần ảo được kết hợp bằng cách tính toán
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6375, rút ​​gọn modulo
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6376 để nó nằm trong
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6377. Một lần nữa, nếu kết quả là
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, nó sẽ được thay thế bằng
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6370

Để làm rõ các quy tắc trên, đây là một số mã Python ví dụ, tương đương với hàm băm tích hợp, để tính toán hàm băm của một số hữu tỷ,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
3

Các loại Iterator¶

Python hỗ trợ khái niệm lặp qua các vùng chứa. Điều này được thực hiện bằng hai phương pháp riêng biệt; . Các trình tự, được mô tả chi tiết hơn bên dưới, luôn hỗ trợ các phương pháp lặp

Một phương thức cần được xác định cho các đối tượng vùng chứa để cung cấp hỗ trợ có thể lặp lại .

vùng chứa. __iter__[]

Trả về một đối tượng iterator . Đối tượng được yêu cầu hỗ trợ giao thức iterator được mô tả bên dưới. Nếu một vùng chứa hỗ trợ các kiểu lặp khác nhau, thì có thể cung cấp các phương thức bổ sung để yêu cầu cụ thể các trình vòng lặp cho các kiểu lặp đó. [Ví dụ về một đối tượng hỗ trợ nhiều hình thức lặp lại sẽ là một cấu trúc cây hỗ trợ cả truyền tải theo chiều rộng và theo chiều sâu. ] Phương thức này tương ứng với vị trí

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6382 của cấu trúc kiểu cho các đối tượng Python trong API Python/C.

Bản thân các đối tượng lặp được yêu cầu hỗ trợ hai phương thức sau, cùng nhau tạo thành giao thức lặp

trình lặp. __iter__[]

Trả về chính đối tượng iterator . Điều này là bắt buộc để cho phép sử dụng cả bộ chứa và bộ lặp với các câu lệnh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6383 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98. Phương thức này tương ứng với vị trí
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6382 của cấu trúc kiểu cho các đối tượng Python trong API Python/C.

trình lặp. __next__[]

Trả về mục tiếp theo từ trình lặp . Nếu không có mục nào khác, hãy tăng ngoại lệ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386. Phương thức này tương ứng với vị trí
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6387 của cấu trúc kiểu cho các đối tượng Python trong API Python/C.

Python định nghĩa một số đối tượng trình lặp để hỗ trợ phép lặp qua các loại trình tự chung và cụ thể, từ điển và các dạng chuyên biệt hơn khác. Các loại cụ thể không quan trọng ngoài việc triển khai giao thức lặp

Khi phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6388 của iterator tăng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386, nó phải tiếp tục làm như vậy trong các lần gọi tiếp theo. Việc triển khai không tuân theo thuộc tính này được coi là bị hỏng

Các loại máy phát điện¶

Trình tạo > của Python cung cấp một cách thuận tiện để triển khai giao thức trình lặp. Nếu phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6390 của đối tượng vùng chứa được triển khai dưới dạng trình tạo, thì nó sẽ tự động trả về một đối tượng trình vòng lặp [về mặt kỹ thuật, đối tượng trình tạo] cung cấp các phương thức
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6390 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6388. Bạn có thể tìm thêm thông tin về trình tạo trong tài liệu về biểu thức năng suất .

Các loại trình tự —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395¶

Có ba loại trình tự cơ bản. danh sách, bộ dữ liệu và đối tượng phạm vi. Các loại trình tự bổ sung được điều chỉnh để xử lý dữ liệu nhị phânchuỗi văn bản được mô tả .

Hoạt động tuần tự phổ biến¶

Các hoạt động trong bảng sau được hỗ trợ bởi hầu hết các loại trình tự, cả có thể thay đổi và không thể thay đổi.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396 ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

Bảng này liệt kê các hoạt động trình tự được sắp xếp theo mức độ ưu tiên tăng dần. Trong bảng, s và t là các chuỗi cùng loại, n, i, j và k là các số nguyên và x là một đối tượng tùy ý đáp ứng mọi hạn chế về loại và giá trị do s áp đặt

Các hoạt động

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99 có cùng mức độ ưu tiên như các hoạt động so sánh. Các phép toán
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
969 [nối] và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 [lặp lại] có cùng mức độ ưu tiên như các phép toán số tương ứng. 3

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6401

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu một phần tử của s bằng x, ngược lại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6404

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 nếu một phần tử của s bằng x, ngược lại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6407

nối của s và t

[6][7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6408 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6409

tương đương với việc thêm s vào chính nó n lần

[2][7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6410

mục thứ i của s, gốc 0

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6411

lát s từ i đến j

[3][4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412

slice of s from i to j with step k

[3][5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

length of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6414

smallest item of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6415

largest item of s

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6416

index of the first occurrence of x in s [at or after index i and before index j]

[8]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6417

total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by comparing corresponding elements. This means that to compare equal, every element must compare equal and the two sequences must be of the same type and have the same length. [For full details see Comparisons in the language reference. ]

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march forward [or backward] even if the underlying sequence is mutated. The iterator terminates only when an

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6418 or a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6386 is encountered [or when the index drops below zero]

ghi chú

  1. While the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    98 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    99 operations are used only for simple containment testing in the general case, some specialised sequences [such as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6424] also use them for subsequence testing

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    4

  2. Values of n less than

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 are treated as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42 [which yields an empty sequence of the same type as s]. Note that items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers; consider

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    5

    What has happened is that

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6427 is a one-element list containing an empty list, so all three elements of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6428 are references to this single empty list. Modifying any of the elements of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6429 modifies this single list. You can create a list of different lists this way

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6

    Further explanation is available in the FAQ entry How do I create a multidimensional list? .

  3. If i or j is negative, the index is relative to the end of sequence s.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6430 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6431 is substituted. But note that
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6432 is still
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42

  4. The slice of s from i to j is defined as the sequence of items with index k such that

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6434. If i or j is greater than
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413. If i is omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    42. If j is omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, use
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413. If i is greater than or equal to j, the slice is empty

  5. The slice of s from i to j with step k is defined as the sequence of items with index

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6441 such that
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6442. In other words, the indices are
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6443,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6444,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6445,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6446 and so on, stopping when j is reached [but never including j]. When k is positive, i and j are reduced to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6413 if they are greater. When k is negative, i and j are reduced to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6448 if they are greater. If i or j are omitted or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, they become “end” values [which end depends on the sign of k]. Note, k cannot be zero. If k is
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31, it is treated like
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    55

  6. Concatenating immutable sequences always results in a new object. This means that building up a sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost, you must switch to one of the alternatives below

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6422 objects, you can build a list and use
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6453 at the end or else write to an
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6454 instance and retrieve its value when complete

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6423 objects, you can similarly use
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6456 or
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6457, or you can do in-place concatenation with a
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6424 object.
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6424 objects are mutable and have an efficient overallocation mechanism

    • if concatenating

      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6394 objects, extend a
      def bit_length[self]:
          s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
          s = s.lstrip['-0b'] # remove leading zeros and minus sign
          return len[s]       # len['100101'] --> 6
      
      6393 instead

    • for other types, investigate the relevant class documentation

  7. Some sequence types [such as

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6395] only support item sequences that follow specific patterns, and hence don’t support sequence concatenation or repetition

  8. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6463 raises
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 when x is not found in s. Not all implementations support passing the additional arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equivalent to using
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6465, only without copying any data and with the returned index being relative to the start of the sequence rather than the start of the slice

Immutable Sequence Types¶

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence types is support for the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6466 built-in

This support allows immutable sequences, such as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 instances, to be used as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 keys and stored in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 instances

Attempting to hash an immutable sequence that contains unhashable values will result in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88

Mutable Sequence Types¶

The operations in the following table are defined on mutable sequence types. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6472 ABC is provided to make it easier to correctly implement these operations on custom sequence types

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any type and value restrictions imposed by s [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 only accepts integers that meet the value restriction
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6474]

Hoạt động

Kết quả

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6475

item i of s is replaced by x

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6476

slice of s from i to j is replaced by the contents of the iterable t

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6477

same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6478

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6479

the elements of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412 are replaced by those of t

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6481

removes the elements of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6412 from the list

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6483

appends x to the end of the sequence [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6484]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6485

removes all items from s [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6486]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6487

creates a shallow copy of s [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6488]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6489 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6490

extends s with the contents of t [for the most part the same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6491]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6492

updates s with its contents repeated n times

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6493

inserts x into s at the index given by i [same as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6494]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6495 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6496

retrieves the item at i and also removes it from s

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6497

remove the first item from s where

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6410 is equal to x

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6499

reverses the items of s in place

[4]

ghi chú

  1. t must have the same length as the slice it is replacing

  2. Đối số tùy chọn i mặc định là

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    941, do đó, theo mặc định, mục cuối cùng được xóa và trả về

  3. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7301 tăng
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    977 khi không tìm thấy x trong s

  4. Phương pháp

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7303 sửa đổi trình tự tại chỗ để tiết kiệm không gian khi đảo ngược một trình tự lớn. To remind users that it operates by side effect, it does not return the reversed sequence

  5. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7304 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 are included for consistency with the interfaces of mutable containers that don’t support slicing operations [such as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6468 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6469].
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 is not part of the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6472 ABC, but most concrete mutable sequence classes provide it

    New in version 3. 3.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7304 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7305 methods.

  6. The value n is an integer, or an object implementing

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7312. Zero and negative values of n clear the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6408 under Common Sequence Operations .

Lists¶

Lists are mutable sequences, typically used to store collections of homogeneous items [where the precise degree of similarity will vary by application]

class list[[iterable]]

Lists may be constructed in several ways

  • Using a pair of square brackets to denote the empty list.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    49

  • Using square brackets, separating items with commas.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7315,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7316

  • Using a list comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7317

  • Using the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7318 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7319

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7320. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7321 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7322 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7323 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7324. If no argument is given, the constructor creates a new empty list,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

Many other operations also produce lists, including the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7326 built-in

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional method.

sort[* , key=None , reverse=False]

This method sorts the list in place, using only

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74 comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail [and the list will likely be left in a partially modified state]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7328 accepts two arguments that can only be passed by keyword [ keyword-only arguments ].

key specifies a function of one argument that is used to extract a comparison key from each list element [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7329]. The key corresponding to each item in the list is calculated once and then used for the entire sorting process. The default value of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 means that list items are sorted directly without calculating a separate key value

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7331 utility is available to convert a 2. x style cmp function to a key function

reverse is a boolean value. If set to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56, then the list elements are sorted as if each comparison were reversed

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind users that it operates by side effect, it does not return the sorted sequence [use

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7326 to explicitly request a new sorted list instance]

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7328 method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes [for example, sort by department, then by salary grade]

For sorting examples and a brief sorting tutorial, see Sorting HOW TO .

CPython implementation detail. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 if it can detect that the list has been mutated during a sort

Tuples¶

Tuples are immutable sequences, typically used to store collections of heterogeneous data [such as the 2-tuples produced by the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7336 built-in]. Tuples are also used for cases where an immutable sequence of homogeneous data is needed [such as allowing storage in a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 instance]

class tuple[[iterable]]

Tuples may be constructed in a number of ways

  • Using a pair of parentheses to denote the empty tuple.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    48

  • Using a trailing comma for a singleton tuple.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7340 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7341

  • Separating items with commas.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7342 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7343

  • Using the

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7344 built-in.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7344 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7346

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7347 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7348 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7349 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7350. If no argument is given, the constructor creates a new empty tuple,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
48

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7352 is a function call with three arguments, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7353 is a function call with a 3-tuple as the sole argument

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7354 may be a more appropriate choice than a simple tuple object

Ranges¶

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6383 loops

class range[stop]class range[start , stop[ , step]]

The arguments to the range constructor must be integers [either built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 or any object that implements the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7312 special method]. If the step argument is omitted, it defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55. If the start argument is omitted, it defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42. If step is zero,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 is raised

For a positive step, the contents of a range

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 are determined by the formula
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7363 where
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7364 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7365

For a negative step, the contents of the range are still determined by the formula

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7363, but the constraints are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7364 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7368

A range object will be empty if

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7369 does not meet the value constraint. Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined by the positive indices

Ranges containing absolute values larger than

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7370 are permitted but some features [such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7371] may raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
991

Range examples

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7

Ranges implement all of the common sequence operations except concatenation and repetition [due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern].

start

The value of the start parameter [or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42 if the parameter was not supplied]

dừng

The value of the stop parameter

step

Giá trị của tham số bước [hoặc

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55 nếu tham số không được cung cấp]

The advantage of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 type over a regular
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 is that a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6395 object will always take the same [small] amount of memory, no matter the size of the range it represents [as it only stores the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 values, calculating individual items and subranges as needed]

Range objects implement the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396 ABC, and provide features such as containment tests, element index lookup, slicing and support for negative indices [see Sequence Types — list, tuple, range ].

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8

Testing range objects for equality with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
79 compares them as sequences. That is, two range objects are considered equal if they represent the same sequence of values. [Note that two range objects that compare equal might have different
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 attributes, for example
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7388 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7389. ]

Changed in version 3. 2. Implement the Sequence ABC. Support slicing and negative indices. Test

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 objects for membership in constant time instead of iterating through all items.

Changed in version 3. 3. Define ‘==’ and ‘. =’ to compare range objects based on the sequence of values they define [instead of comparing based on object identity].

New in version 3. 3. The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7379,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7380 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7381 attributes.

See also

  • The linspace recipe shows how to implement a lazy version of range suitable for floating point applications

Text Sequence Type —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422¶

Textual data in Python is handled with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 objects, or strings. Strings are immutable sequences of Unicode code points. String literals are written in a variety of ways.

  • Single quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7396

  • Double quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7397

  • Triple quoted.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7398,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7399

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to a single string literal. That is,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7400

See String and Bytes literals for more about the various forms of string literal, including supported escape sequences, and the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 [“raw”] prefix that disables most escape sequence processing.

Strings may also be created from other objects using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 constructor

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string s,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7403

There is also no mutable string type, but

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6453 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6454 can be used to efficiently construct strings from multiple fragments

Changed in version 3. 3. For backwards compatibility with the Python 2 series, the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7406 prefix is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 prefix.

class str[object='']class str[object=b'' , encoding='utf-8' , errors='strict']

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7409 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7410, which is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If object does not have a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7411 method, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 falls back to returning
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7413

If at least one of encoding or errors is given, object should be a bytes-like object [e. g.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424]. In this case, if object is a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 [or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424] object, then
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7418 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7419. Otherwise, the bytes object underlying the buffer object is obtained before calling
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7420. See Binary Sequence Types — bytes, bytearray, memoryview and Buffer Protocol for information on buffer objects.

Passing a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 object to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 without the encoding or errors arguments falls under the first case of returning the informal string representation [see also the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7423 command-line option to Python]. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9

For more information on the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 class and its methods, see Text Sequence Type — str and the String Methods section below. To output formatted strings, see the Formatted string literals and Format String Syntax sections. In addition, see the Text Processing Services section.

String Methods¶

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization [see

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7425, Format String Syntax and Custom String Formatting ] and the other based on C
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle [ printf-style String Formatting ].

The Text Processing Services section of the standard library covers a number of other modules that provide various text related utilities [including regular expression support in the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7427 module].

str. capitalize[]

Return a copy of the string with its first character capitalized and the rest lowercased

Changed in version 3. 8. The first character is now put into titlecase rather than uppercase. This means that characters like digraphs will only have their first letter capitalized, instead of the full character.

str. casefold[]

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7428 is equivalent to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7429. Since it is already lowercase,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7430 would do nothing to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7428;
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7432 converts it to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7429

The casefolding algorithm is described in section 3. 13 of the Unicode Standard

New in version 3. 3

str. center[width[ , fillchar]]

Return centered in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. count[sub[ , start[ , end]]]

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one

str. encode[encoding='utf-8' , errors='strict']

Return the string encoded to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423

encoding defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7436; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7437 [the default], a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7438 exception is raised. Other possible values are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7439,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7440,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7441,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7442 and any other name registered via
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7443. See Error Handlers for details.

Vì lý do hiệu suất, giá trị của lỗi không được kiểm tra tính hợp lệ trừ khi thực sự xảy ra lỗi mã hóa, Chế độ phát triển Python được bật hoặc . debug build is used.

Changed in version 3. 1. Đã thêm hỗ trợ cho đối số từ khóa.

Changed in version 3. 9. The value of the errors argument is now checked in Python Development Mode and in debug mode .

str. endswith[suffix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string ends with the specified suffix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

str. expandtabs[tabsize=8]

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. Tab positions occur every tabsize characters [default is 8, giving tab positions at columns 0, 8, 16 and so on]. To expand the string, the current column is set to zero and the string is examined character by character. If the character is a tab [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7446], one or more space characters are inserted in the result until the current column is equal to the next tab position. [The tab character itself is not copied. ] If the character is a newline [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7447] or return [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448], it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
90

str. find[sub[ , start[ , end]]]

Return the lowest index in the string where substring sub is found within the slice

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 if sub is not found

Note

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 operator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
91

str. format[*args , **kwargs]

Perform a string formatting operation. The string on which this method is called can contain literal text or replacement fields delimited by braces

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
92

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note

When formatting a number [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908 and subclasses] with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6351 type [ex.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7459], the function temporarily sets the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 locale to decode
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7462 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7463 fields of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7464 if they are non-ASCII or longer than 1 byte, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 locale is different than the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale. This temporary change affects other threads

Changed in version 3. 7. When formatting a number with the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6351 type, the function sets temporarily the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7460 locale to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7461 locale in some cases.

str. format_map[mapping]

Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7470, except that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7471 is used directly and not copied to a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468. This is useful if for example
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7471 is a dict subclass

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
93

New in version 3. 2

str. index[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451, but raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the substring is not found

str. isalnum[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are alphanumeric and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. A character
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7478 is alphanumeric if one of the following returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7480,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7481,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7482, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7483

str. isalpha[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are alphabetic and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i. e. , those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is empty or all characters in the string are ASCII,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are decimal characters and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”

str. isdigit[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are digits and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Digits include decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is a valid identifier according to the language definition, section Identifiers and keywords .

Call

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7493 to test whether string
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7494 is a reserved identifier, such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7495 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7496

Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
94

str. islower[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all cased characters 4 in the string are lowercase and there is at least one cased character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

str. isnumeric[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are numeric characters, and there is at least one character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all characters in the string are printable or the string is empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Các ký tự không in được là những ký tự được định nghĩa trong cơ sở dữ liệu ký tự Unicode là “Khác” hoặc “Dấu phân cách”, ngoại trừ khoảng trống ASCII [0x20] được coi là có thể in được. [Lưu ý rằng các ký tự có thể in được trong ngữ cảnh này là những ký tự không được thoát khi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32 được gọi trên một chuỗi. Nó không liên quan đến việc xử lý các chuỗi được ghi cho
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7704 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7705. ]

str. không gian[]

Trả về

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 nếu chỉ có ký tự khoảng trắng trong chuỗi và có ít nhất một ký tự, ngược lại là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

Một ký tự là khoảng trắng nếu trong cơ sở dữ liệu ký tự Unicode [xem

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7708], danh mục chung của nó là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7709 [“Dấu phân cách, dấu cách”] hoặc lớp hai chiều của nó là một trong số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7710,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7711 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7712

str. tiêu đề[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Trả lại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 nếu không

str. isupper[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all cased characters 4 in the string are uppercase and there is at least one cased character,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
95

str. join[iterable]

Return a string which is the concatenation of the strings in iterable. A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 will be raised if there are any non-string values in iterable, including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects. The separator between elements is the string providing this method

str. ljust[width[ , fillchar]]

Return the string left justified in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. lower[]

Return a copy of the string with all the cased characters 4 converted to lowercase

The lowercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. lstrip[[chars]]

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
96

See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7721 for a method that will remove a single prefix string rather than all of a set of characters. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
97

static str. maketrans[x[ , y[ , z]]]

This static method returns a translation table usable for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7722

If there is only one argument, it must be a dictionary mapping Unicode ordinals [integers] or characters [strings of length 1] to Unicode ordinals, strings [of arbitrary lengths] or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31. Character keys will then be converted to ordinals

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 in the result

str. partition[sep]

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix[prefix , /]

If the string starts with the prefix string, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7725. Otherwise, return a copy of the original string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98

New in version 3. 9

str. removesuffix[suffix , /]

If the string ends with the suffix string and that suffix is not empty, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7726. Otherwise, return a copy of the original string

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
99

New in version 3. 9

str. replace[old , new[ , count]]

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind[sub[ , start[ , end]]]

Return the highest index in the string where substring sub is found, such that sub is contained within

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 on failure

str. rindex[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7729 but raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the substring sub is not found

str. rjust[width[ , fillchar]]

Return the string right justified in a string of length width. Padding is done using the specified fillchar [default is an ASCII space]. The original string is returned if width is less than or equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

str. rpartition[sep]

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit[sep=None , maxsplit=- 1]

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, any whitespace string is a separator. Except for splitting from the right,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 behaves like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 which is described in detail below

str. rstrip[[chars]]

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
630

See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7736 for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
631

str. split[sep=None , maxsplit=- 1]

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done [thus, the list will have at most

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7737 elements]. If maxsplit is not specified or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941, then there is no limit on the number of splits [all possible splits are made]

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7739 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7740]. The sep argument may consist of multiple characters [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7741 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7742]. Splitting an empty string with a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7743

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
632

If sep is not specified or is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, a different splitting algorithm is applied. runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
633

str. splitlines[keepends=False]

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal newlines .

Representation

Description

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7447

Line Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7448

Carriage Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7749

Carriage Return + Line Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7750 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7751

Line Tabulation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7752 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7753

Form Feed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7754

File Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7755

Group Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7756

Record Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7757

Next Line [C1 Control Code]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7758

Line Separator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7759

Paragraph Separator

Changed in version 3. 2.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7750 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7752 added to list of line boundaries.

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
634

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
635

For comparison,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7763 gives

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
636

str. startswith[prefix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if string starts with the prefix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. With optional end, stop comparing string at that position

str. strip[[chars]]

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
637

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed from the leading end until reaching a string character that is not contained in the set of characters in chars. A similar action takes place on the trailing end. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
638

str. swapcase[]

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not necessarily true that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7767

str. title[]

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
639

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
640

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7768 function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
641

str. translate[table]

Return a copy of the string in which each character has been mapped through the given translation table. Bảng phải là đối tượng thực hiện lập chỉ mục thông qua

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7769, thường là ánh xạ hoặc trình tự. When indexed by a Unicode ordinal [an integer], the table object can do any of the following: return a Unicode ordinal or a string, to map the character to one or more other characters; return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, to delete the character from the return string; or raise a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7771 exception, to map the character to itself.

You can use

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7772 to create a translation map from character-to-character mappings in different formats

See also the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7773 module for a more flexible approach to custom character mappings

str. upper[]

Return a copy of the string with all the cased characters 4 converted to uppercase. Note that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7774 might be
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 if
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7494 contains uncased characters or if the Unicode category of the resulting character[s] is not “Lu” [Letter, uppercase], but e. g. “Lt” [Letter, titlecase]

The uppercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. zfill[width]

Return a copy of the string left filled with ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 digits to make a string of length width. A leading sign prefix [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779] is handled by inserting the padding after the sign character rather than before. The original string is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
642

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426-style String Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors [such as failing to display tuples and dictionaries correctly]. Using the newer formatted string literals , the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7425 interface, or template strings may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation. the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 operator [modulo]. This is also known as the string formatting or interpolation operator. Given
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7784 [where format is a string],
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 in the C language

If format requires a single argument, values may be a single non-tuple object. 5 Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object [for example, a dictionary]

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7787 character, which marks the start of the specifier

  2. Mapping key [optional], consisting of a parenthesised sequence of characters [for example,

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788]

  3. Conversion flags [optional], which affect the result of some conversion types

  4. Minimum field width [optional]. If specified as an

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [asterisk], the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision [optional], given as a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7790 [dot] followed by the precision. If specified as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [an asterisk], the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier [optional]

  7. Conversion type

Khi đối số bên phải là từ điển [hoặc loại ánh xạ khác], thì các định dạng trong chuỗi phải bao gồm khóa ánh xạ trong ngoặc đơn vào từ điển đó được chèn ngay sau ký tự

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787. The mapping key selects the value to be formatted from the mapping. For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
643

In this case no

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 specifiers may occur in a format [since they require a sequential parameter list]

The conversion flag characters are

Flag

Nghĩa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7794

The value conversion will use the “alternate form” [where defined below]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777

The conversion will be zero padded for numeric values

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779

The converted value is left adjusted [overrides the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 conversion if both are given]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7798

[a space] A blank should be left before a positive number [or empty string] produced by a signed conversion

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778

A sign character [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779] will precede the conversion [overrides a “space” flag]

A length modifier [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8202,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8203, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8204] may be present, but is ignored as it is not necessary for Python – so e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8205 is identical to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

The conversion types are

Conversion

Nghĩa

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8208

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8209

Signed octal value

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8210

Obsolete type – it is identical to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8212

Signed hexadecimal [lowercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8213

Signed hexadecimal [uppercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8214

Floating point exponential format [lowercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8215

Floating point exponential format [uppercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8216

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8217

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8218

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8219

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220

Single character [accepts integer or single character string]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8221

String [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8223

String [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225

String [converts any Python object using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8226]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787

No argument is converted, results in a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 character in the result

ghi chú

  1. The alternate form causes a leading octal specifier [

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8229] to be inserted before the first digit

  2. The alternate form causes a leading

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8230 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8231 [depending on whether the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8212 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8213 format was used] to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234, the output is truncated to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234 characters

  6. See PEP 237

Since Python strings have an explicit length,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8236 conversions do not assume that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8237 is the end of the string

Changed in version 3. 1.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8238 conversions for numbers whose absolute value is over 1e50 are no longer replaced by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8239 conversions.

Binary Sequence Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242¶

The core built-in types for manipulating binary data are

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424. They are supported by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8246 module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision floating values

Bytes Objects¶

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely related to string objects in a variety of other ways

class bytes[[source[ , encoding[ , errors]]]]

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8247 prefix is added

  • Single quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8248

  • Double quotes.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8249

  • Triple quoted.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8250,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8251

Only ASCII characters are permitted in bytes literals [regardless of the declared source code encoding]. Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence

As with string literals, bytes literals may also use a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7362 prefix to disable processing of escape sequences. See String and Bytes literals for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable sequences of integers, with each value in the sequence restricted such that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8253 [attempts to violate this restriction will trigger
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977]. This is done deliberately to emphasise that while many binary formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the case for arbitrary binary data [blindly applying text processing algorithms to binary data formats that are not ASCII compatible will usually lead to data corruption]

In addition to the literal forms, bytes objects can be created in a number of other ways

  • A zero-filled bytes object of a specified length.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8255

  • From an iterable of integers.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8256

  • Copying existing binary data via the buffer protocol.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8257

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format

classmethod fromhex[string]

This

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 class method returns a bytes object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
644

Changed in version 3. 7.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8259 now skips all ASCII whitespace in the string, not just spaces.

Hàm chuyển đổi ngược tồn tại để chuyển đổi một đối tượng byte thành biểu diễn thập lục phân của nó

hex[[sep[ , bytes_per_sep]]]

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong ví dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
645

Nếu bạn muốn làm cho chuỗi hex dễ đọc hơn, bạn có thể chỉ định một tham số sep tách ký tự đơn để đưa vào đầu ra. Theo mặc định, dấu tách này sẽ được bao gồm giữa mỗi byte. A second optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right, negative values from the left

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
646

New in version 3. 5

Changed in version 3. 8.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers [akin to a tuple], for a bytes object b,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8261 will be an integer, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8262 will be a bytes object of length 1. [This contrasts with text strings, where both indexing and slicing will produce a string of length 1]

The representation of bytes objects uses the literal format [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8263] since it is often more useful than e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8264. You can always convert a bytes object into a list of integers using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8265

Bytearray Objects¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 objects are a mutable counterpart to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects

class bytearray[[source[ , encoding[ , errors]]]]

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8268

  • Creating a zero-filled instance with a given length.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8269

  • From an iterable of integers.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8270

  • Copying existing binary data via the buffer protocol.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8271

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes and bytearray operations described in Bytes and Bytearray Operations .

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that format

classmethod fromhex[string]

This

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 class method returns bytearray object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
647

Changed in version 3. 7.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8273 now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation

hex[[sep[ , bytes_per_sep]]]

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong ví dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
648

New in version 3. 5

Changed in version 3. 8. Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8275 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers [akin to a list], for a bytearray object b,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8261 will be an integer, while
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8262 will be a bytearray object of length 1. [This contrasts with text strings, where both indexing and slicing will produce a string of length 1]

The representation of bytearray objects uses the bytes literal format [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8278] since it is often more useful than e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8279. You can always convert a bytearray object into a list of integers using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8265

Bytes and Bytearray Operations¶

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of the same type, but with any bytes-like object . Due to this flexibility, they can be freely mixed in operations without causing errors. Tuy nhiên, kiểu trả về của kết quả có thể phụ thuộc vào thứ tự của các toán hạng.

Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings don’t accept bytes as their arguments. For example, you have to write

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
649

and

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
730

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided when working with arbitrary binary data. These restrictions are covered below

Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may lead to data corruption

The following methods on bytes and bytearray objects can be used with arbitrary binary data

bytes. count[sub[ , start[ , end]]]bytearray. count[sub[ , start[ , end]]]

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus one

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. removeprefix[prefix , /]bytearray. removeprefix[prefix , /]

If the binary data starts with the prefix string, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8281. Otherwise, return a copy of the original binary data

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
731

The prefix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. removesuffix[suffix , /]bytearray. removesuffix[suffix , /]

If the binary data ends with the suffix string and that suffix is not empty, return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8282. Otherwise, return a copy of the original binary data

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
732

The suffix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. decode[encoding='utf-8' , errors='strict']bytearray. decode[encoding='utf-8' , errors='strict']

Return the bytes decoded to a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422

encoding defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7436; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7437 [the default], a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7438 exception is raised. Other possible values are
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7439,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7440, and any other name registered via
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7443. See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs, Python Development Mode is enabled or a debug build is used.

Note

Passing the encoding argument to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 allows decoding any bytes-like object directly, without needing to make a temporary
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 object.

Changed in version 3. 1. Đã thêm hỗ trợ cho đối số từ khóa.

Changed in version 3. 9. The value of the errors argument is now checked in Python Development Mode and in debug mode .

bytes. endswith[suffix[ , start[ , end]]]bytearray. endswith[hậu tố[ , start[, end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the binary data ends with the specified suffix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. suffix can also be a tuple of suffixes to look for. Với bắt đầu tùy chọn, bắt đầu kiểm tra tại vị trí đó. With optional end, stop comparing at that position

The suffix[es] to search for may be any bytes-like object .

bytes. find[sub[ , start[ , end]]]bytearray. find[sub[ , start[ , end]]]

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 if sub is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
98 operator

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
733

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. index[sub[ , start[ , end]]]bytearray. index[sub[ , start[ , end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7451, but raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the subsequence is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join[iterable]bytearray. join[iterable]

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88 will be raised if there are any values in iterable that are not bytes-like objects , including
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes. maketrans[from , to]static bytearray. maketrans[from , to]

This static method returns a translation table usable for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9003 that will map each character in from into the character at the same position in to; from and to must both be bytes-like objects and have the same length.

Mới trong phiên bản 3. 1

bytes. partition[sep]bytearray. partition[sep]

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects

The separator to search for may be any bytes-like object .

bytes. replace[old , new[ , count]]bytearray. replace[old , new[ , count]]

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

The subsequence to search for and its replacement may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rfind[sub[ , start[ , end]]]bytearray. rfind[sub[ , start[ , end]]]

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7449. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941 on failure

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rindex[sub[ , start[ , end]]]bytearray. rindex[sub[ , start[, end]]]

Like

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7729 but raises
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 when the subsequence sub is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rpartition[sep]bytearray. rpartition[sep]

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence

The separator to search for may be any bytes-like object .

bytes. startswith[prefix[ , start[ , end]]]bytearray. startswith[prefix[ , start[ , end]]]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the binary data starts with the specified prefix, otherwise return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The prefix[es] to search for may be any bytes-like object .

bytes. translate[table , / , delete=b'']bytearray. translate[table , / , delete=b'']

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes object of length 256

You can use the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9010 method to create a translation table

Set the table argument to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 for translations that only delete characters

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
734

Changed in version 3. 6. delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. center[width[ , fillbyte]]bytearray. center[width[ , fillbyte]]

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. ljust[width[ , fillbyte]]bytearray. ljust[width[ , fillbyte]]

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. lstrip[[chars]]bytearray. lstrip[[chars]]

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
735

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9017 for a method that will remove a single prefix string rather than all of a set of characters. For example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
736

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. rjust[chiều rộng[ , . fillbyte]]bytearray.rjust[width[ , fillbyte]]

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte [default is an ASCII space]. For

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rsplit[sep=None , maxsplit=- 1]bytearray. rsplit[sep=None , maxsplit=- 1]

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the right,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7733 behaves like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 which is described in detail below

bytes. rstrip[[chars]]bytearray. rstrip[[chars]]

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
737

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9024 for a method that will remove a single suffix string rather than all of a set of characters. For example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
738

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. split[sep=None , maxsplit=- 1]bytearray. split[sep=None , maxsplit=- 1]

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given and non-negative, at most maxsplit splits are done [thus, the list will have at most

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7737 elements]. If maxsplit is not specified or is
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
941, then there is no limit on the number of splits [all possible splits are made]

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences [for example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9027 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9028]. The sep argument may consist of a multibyte sequence [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9029 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9030]. Splitting an empty sequence with a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9031 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9032 depending on the type of object being split. The sep argument may be any bytes-like object .

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
739

If sep is not specified or is

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, a different splitting algorithm is applied. runs of consecutive ASCII whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII whitespace without a specified separator returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
49

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
740

bytes. strip[[chars]]bytearray. strip[[chars]]

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
741

The binary sequence of byte values to remove may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. viết hoa[]bytearray. viết hoa[]

Trả về một bản sao của chuỗi với mỗi byte được hiểu là ký tự ASCII và byte đầu tiên được viết hoa và phần còn lại được viết thường. Non-ASCII byte values are passed through unchanged

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. expandtabs[tabsize=8]bytearray. expandtabs[tabsize=8]

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending on the current column and the given tab size. Tab positions occur every tabsize bytes [default is 8, giving tab positions at columns 0, 8, 16 and so on]. To expand the sequence, the current column is set to zero and the sequence is examined byte by byte. Nếu byte là một ký tự tab ASCII [______19036], một hoặc nhiều ký tự khoảng trắng sẽ được chèn vào kết quả cho đến khi cột hiện tại bằng với vị trí tab tiếp theo. [The tab character itself is not copied. ] Nếu byte hiện tại là một dòng mới ASCII [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9037] hoặc ký tự xuống dòng [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9038], nó sẽ được sao chép và cột hiện tại được đặt lại về 0. Any other byte value is copied unchanged and the current column is incremented by one regardless of how the byte value is represented when printed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
742

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. isalnum[]bytearray. isalnum[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9041. ASCII decimal digits are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9042

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
743

bytes. isalpha[]bytearray. isalpha[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are alphabetic ASCII characters and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9041

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
744

bytes. isascii[]bytearray. isascii[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the sequence is empty or all bytes in the sequence are ASCII,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII bytes are in the range 0-0x7F

New in version 3. 7

bytes. isdigit[]bytearray. isdigit[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are ASCII decimal digits and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII decimal digits are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9042

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
745

bytes. islower[]bytearray. islower[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
746

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

bytes. isspace[]bytearray. isspace[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if all bytes in the sequence are ASCII whitespace and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. ASCII whitespace characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9057 [space, tab, newline, carriage return, vertical tab, form feed]

bytes. istitle[]bytearray. istitle[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the sequence is ASCII titlecase and the sequence is not empty,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise. See
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9060 for more details on the definition of “titlecase”

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
747

bytes. isupper[]bytearray. isupper[]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII characters,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 otherwise

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
748

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

bytes. lower[]bytearray. lower[]

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase counterpart

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
749

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. splitlines[keepends=False]bytearray. splitlines[keepends=False]

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
770

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7734 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
771

bytes. swapcase[]bytearray. swapcase[]

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart and vice-versa

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
772

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

Unlike

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9070, it is always the case that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9071 for the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary Unicode code points

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. title[]bytearray. title[]

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the remaining characters are lowercase. Uncased byte values are left unmodified

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
773

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054. All other byte values are uncased

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
774

A workaround for apostrophes can be constructed using regular expressions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
775

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. upper[]bytearray. upper[]

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
776

Lowercase ASCII characters are those byte values in the sequence

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9053. Uppercase ASCII characters are those byte values in the sequence
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9054

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. zfill[width]bytearray. zfill[width]

Return a copy of the sequence left filled with ASCII

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9076 digits to make a sequence of length width. A leading sign prefix [
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9077/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9078] is handled by inserting the padding after the sign character rather than before. For
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
9080

For example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
777

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7426-style Bytes Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors [such as failing to display tuples and dictionaries correctly]. If the value being printed may be a tuple or dictionary, wrap it in a tuple

Bytes objects [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423/
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424] have one unique built-in operation. the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 operator [modulo]. Điều này còn được gọi là định dạng byte hoặc toán tử nội suy. Given
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7784 [where format is a bytes object],
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7783 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7786 in the C language

Nếu định dạng yêu cầu một đối số duy nhất, các giá trị có thể là một đối tượng không phải bộ dữ liệu. 5 Otherwise, values must be a tuple with exactly the number of items specified by the format bytes object, or a single mapping object [for example, a dictionary]

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7787 character, which marks the start of the specifier

  2. Mapping key [optional], consisting of a parenthesised sequence of characters [for example,

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7788]

  3. Conversion flags [optional], which affect the result of some conversion types

  4. Minimum field width [optional]. If specified as an

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [asterisk], the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision [optional], given as a

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7790 [dot] followed by the precision. If specified as
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    7789 [an asterisk], the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier [optional]

  7. Conversion type

When the right argument is a dictionary [or other mapping type], then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 character. The mapping key selects the value to be formatted from the mapping. Ví dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
778

In this case no

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 specifiers may occur in a format [since they require a sequential parameter list]

The conversion flag characters are

Flag

Nghĩa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7794

The value conversion will use the “alternate form” [where defined below]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777

The conversion will be zero padded for numeric values

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779

The converted value is left adjusted [overrides the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7777 conversion if both are given]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7798

[a space] A blank should be left before a positive number [or empty string] produced by a signed conversion

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778

A sign character [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7778 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7779] will precede the conversion [overrides a “space” flag]

A length modifier [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8202,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8203, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8204] may be present, but is ignored as it is not necessary for Python – so e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8205 is identical to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8206

The conversion types are

Conversion

Nghĩa

ghi chú

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8208

Signed integer decimal

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8209

Signed octal value

[1]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8210

Obsolete type – it is identical to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8207

[8]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8212

Signed hexadecimal [lowercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8213

Signed hexadecimal [uppercase]

[2]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8214

Floating point exponential format [lowercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8215

Floating point exponential format [uppercase]

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8216

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8217

Floating point decimal format

[3]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8218

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8219

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

[4]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8220

Single byte [accepts integer or single byte objects]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
022

Bytes [any object that follows the buffer protocol or has

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
023].

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8223

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8223 is an alias for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
022 and should only be used for Python2/3 code bases

[6]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225

Byte [chuyển đổi bất kỳ đối tượng Python nào bằng cách sử dụng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
028]

[5]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8221

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8221 is an alias for
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8225 and should only be used for Python2/3 code bases

[7]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787

No argument is converted, results in a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7787 character in the result

ghi chú

  1. The alternate form causes a leading octal specifier [

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8229] to be inserted before the first digit

  2. The alternate form causes a leading

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8230 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8231 [depending on whether the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8212 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8213 format was used] to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234, the output is truncated to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8234 characters

  6. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    041 is deprecated, but will not be removed during the 3. x series

  7. def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    042 is deprecated, but will not be removed during the 3. x series

  8. See PEP 237

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

See also

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3. 5

Memory Views¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 objects allow Python code to access the internal data of an object that supports the buffer protocol without copying.

class memoryview[object]

Create a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 that references object. object must support the buffer protocol. Built-in objects that support the buffer protocol include
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 has the notion of an element, which is the atomic memory unit handled by the originating object. For many simple types such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424, an element is a single byte, but other types such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
050 may have bigger elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
051 is equal to the length of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
052. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
053, the length is 1. If
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
054, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of the nested list representation of the view. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
055 attribute will give you the number of bytes in a single element

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
779

If

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
057 is one of the native format specifiers from the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module, indexing with an integer or a tuple of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed with the empty tuple

Here is an example with a non-byte format

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
820

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not allowed

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
821

One-dimensional memoryviews of hashable [read-only] types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash is defined as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
059

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
822

Changed in version 3. 3. One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3. 4. memoryview is now registered automatically with

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6396

Changed in version 3. 5. lượt xem bộ nhớ hiện có thể được lập chỉ mục với bộ số nguyên.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8242 has several methods

__eq__[exporter]

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding values are equal when the operands’ respective format codes are interpreted using

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 syntax

For the subset of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 format strings currently supported by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
064,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
065 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
066 are equal if
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
067

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
823

If either format string is not supported by the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module, then the objects will always compare as unequal [even if the format strings and buffer contents are identical]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
824

Note that, as with floating point numbers,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
069 does not imply
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
070 for memoryview objects

Changed in version 3. 3. Previous versions compared the raw memory disregarding the item format and the logical array structure.

tobytes[order='C']

Return the data in the buffer as a bytestring. This is equivalent to calling the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 constructor on the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
825

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to bytes.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
072 supports all format strings, including those that are not in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module syntax

New in version 3. 8. thứ tự có thể là {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first. order=None is the same as order=’C’.

hex[[sep[ , bytes_per_sep]]]

Return a string object containing two hexadecimal digits for each byte in the buffer

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
826

New in version 3. 5

Changed in version 3. 8. Similar to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
8260,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
075 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist[]

Return the data in the buffer as a list of elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
827

Changed in version 3. 3.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
064 now supports all single character native formats in
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module syntax as well as multi-dimensional representations.

toreadonly[]

Return a readonly version of the memoryview object. The original memoryview object is unchanged

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
828

Mới trong phiên bản 3. 8

release[]

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when a view is held on them [for example, a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6424 would temporarily forbid resizing]; therefore, calling release[] is handy to remove these restrictions [and free any dangling resources] as soon as possible

After this method has been called, any further operation on the view raises a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 [except
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
080 itself which can be called multiple times]

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
829

The context management protocol can be used for a similar effect, using the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900

New in version 3. 2

cast[format[ , shape]]

Truyền dạng xem bộ nhớ sang định dạng hoặc hình dạng mới. shape defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
082, which means that the result view will be one-dimensional. The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D -> C- contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 syntax. One of the formats must be a byte format [‘B’, ‘b’ or ‘c’]. The byte length of the result must be the same as the original length

Truyền 1D/dài thành 1D/byte không dấu

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901

Truyền 1D/byte không dấu thành 1D/char

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902

Truyền 1D/byte thành 3D/int thành 1D/char đã ký

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
903

Truyền 1D/dài không dấu thành 2D/dài không dấu

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
904

New in version 3. 3

Đã thay đổi trong phiên bản 3. 5. The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available

obj

The underlying object of the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
905

New in version 3. 3

nbytes

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
084. This is the amount of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
085

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
906

Multi-dimensional arrays

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
907

New in version 3. 3

readonly

A bool indicating whether the memory is read only

format

A string containing the format [in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
058 module style] for each element in the view. A memoryview can be created from exporters with arbitrary format strings, but some methods [e. g.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
064] are restricted to native single element formats

Changed in version 3. 3. format

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
088 is now handled according to the struct module syntax. This means that
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
089.

itemsize

The size in bytes of each element of the memoryview

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
908

ndim

An integer indicating how many dimensions of a multi-dimensional array the memory represents

shape

A tuple of integers the length of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
090 giving the shape of the memory as an N-dimensional array

Changed in version 3. 3. An empty tuple instead of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 when ndim = 0.

strides

A tuple of integers the length of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
090 giving the size in bytes to access each element for each dimension of the array

Changed in version 3. 3. An empty tuple instead of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only

c_contiguous

A bool indicating whether the memory is C- contiguous .

New in version 3. 3

f_contiguous

A bool indicating whether the memory is Fortran contiguous .

New in version 3. 3

contiguous

A bool indicating whether the memory is contiguous .

New in version 3. 3

Set Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470¶

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. [For other containers see the built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 classes, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
099 module. ]

Like other collections, sets support

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
100,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
101, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
102. Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior

Hiện tại có hai loại bộ tích hợp sẵn,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470. Loại
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 có thể thay đổi — có thể thay đổi nội dung bằng các phương pháp như
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
106 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7301. Vì nó có thể thay đổi nên nó không có giá trị băm và không thể được sử dụng làm khóa từ điển hoặc làm thành phần của tập hợp khác. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 type is immutable and hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

Non-empty sets [not frozensets] can be created by placing a comma-separated list of elements within braces, for example.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
109, in addition to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 constructor

The constructors for both classes work the same

class set[[iterable]]class frozenset[[iterable]]

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be hashable . To represent sets of sets, the inner sets must be

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 objects. If iterable is not specified, a new empty set is returned.

Sets can be created by several means

  • Use a comma-separated list of elements within braces.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    109

  • Use a set comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    113

  • Use the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    51,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    115,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    116

Instances of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 provide the following operations

len[s]

Return the number of elements in set s [cardinality of s]

x in s

Test x for membership in s

x not in s

Test x for non-membership in s

isdisjoint[other]

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if the set has no elements in common with other. Sets are disjoint if and only if their intersection is the empty set

issubset[other]set 6 120

issuperset[other]set >= other

Test whether every element in other is in the set

set > other

Test whether the set is a proper superset of other, that is,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
121

union[*others]set . other . .

Return a new set with elements from the set and all others

intersection[*others]set & other & .

Return a new set with elements common to the set and all others

difference[*others]set - other - .

Trả về một tập hợp mới với các phần tử trong tập hợp không có trong các phần tử khác

symmetric_difference[khác]set ^ other

Return a new set with elements in either the set or other but not both

bản sao[]

Return a shallow copy of the set

Lưu ý, các phiên bản không phải toán tử của các phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
122,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
123,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
124,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
125,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
126 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
127 sẽ chấp nhận bất kỳ lần lặp nào làm đối số. Ngược lại, các đối tác dựa trên toán tử của chúng yêu cầu các đối số của chúng được đặt. Điều này loại bỏ các cấu trúc dễ bị lỗi như
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
128 để có thể đọc dễ dàng hơn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
129

Cả

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 đều hỗ trợ thiết lập so sánh. Two sets are equal if and only if every element of each set is contained in the other [each is a subset of the other]. A set is less than another set if and only if the first set is a proper subset of the second set [is a subset, but is not equal]. A set is greater than another set if and only if the first set is a proper superset of the second set [is a superset, but is not equal]

Instances of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 are compared to instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 based on their members. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
134 returns
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 and so does
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
136

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
138,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
139, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
140

Since sets only define partial ordering [subset relationships], the output of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
141 method is undefined for lists of sets

Set elements, like dictionary keys, must be hashable .

Binary operations that mix

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 instances with
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470 return the type of the first operand. For example.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
144 returns an instance of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470

The following table lists operations available for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 that do not apply to immutable instances of
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6470

update[*others]set . = other . .

Update the set, adding elements from all others

intersection_update[*others]set &= other & .

Update the set, keeping only elements found in it and all others

difference_update[*others]set -= other . .

Update the set, removing elements found in others

symmetric_difference_update[other]set ^= other

Update the set, keeping only elements found in either set, but not in both

add[elem]

Add element elem to the set

remove[elem]

Remove element elem from the set. Raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 if elem is not contained in the set

discard[elem]

Remove element elem from the set if it is present

pop[]

Remove and return an arbitrary element from the set. Raises

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 if the set is empty

clear[]

Remove all elements from the set

Note, the non-operator versions of the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
150,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
151,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
152, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
153 methods will accept any iterable as an argument

Lưu ý, đối số elem cho các phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
900,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7301 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
156 có thể là một tập hợp. To support searching for an equivalent frozenset, a temporary one is created from elem

Mapping Types —
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468¶

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. [For other containers see the built-in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 classes, and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
099 module. ]

A dictionary’s keys are almost arbitrary values. Values that are not hashable , that is, values containing lists, dictionaries or other mutable types [that are compared by value rather than by object identity] may not be used as keys. Values that compare equal [such as

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
163, and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56] can be used interchangeably to index the same dictionary entry.

class dict[**kwargs]class dict[mapping , **kwargs]class dict[iterable , **kwargs]

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword arguments

Dictionaries can be created by several means

  • Use a comma-separated list of

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    165 pairs within braces.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    166 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    167

  • Use a dict comprehension.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    50,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    169

  • Use the type constructor.

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    170,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    171,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    172

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument

To illustrate, the following examples all return a dictionary equal to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
173

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
909

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise, any valid keys can be used

These are the operations that dictionaries support [and therefore, custom mapping types should support too]

list[d]

Return a list of all the keys used in the dictionary d

len[d]

Return the number of items in the dictionary d

d[key]

Return the item of d with key key. Raises a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 if key is not in the map

If a subclass of dict defines a method

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175 and key is not present, the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 operation calls that method with the key key as argument. The
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 operation then returns or raises whatever is returned or raised by the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
178 call. No other operations or methods invoke
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175. Nếu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175 không được xác định, thì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 được nâng lên.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
175 must be a method; it cannot be an instance variable

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
00

The example above shows part of the implementation of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
183. A different
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
184 method is used by
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
185

d[key] = giá trị

Set

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 to value

del d[key]

Remove

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
176 from d. Raises a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 if key is not in the map

key in d

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if d has a key key, else
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38

key not in d

Tương đương với

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
191

iter[d]

Return an iterator over the keys of the dictionary. This is a shortcut for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
192

clear[]

Remove all items from the dictionary

bản sao[]

Return a shallow copy of the dictionary

classmethod fromkeys[iterable[ , value]]

Create a new dictionary with keys from iterable and values set to value

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
193 is a class method that returns a new dictionary. value defaults to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31. All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list. To get distinct values, use a dict comprehension instead.

get[key[ , default]]

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31, so that this method never raises a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148

items[]

Return a new view of the dictionary’s items [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 pairs]. See the documentation of view objects .

keys[]

Return a new view of the dictionary’s keys. See the documentation of view objects .

pop[key[ , default]]

If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148 is raised

popitem[]

Remove and return a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 pair from the dictionary. Pairs are returned in LIFO order

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200 is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary is empty, calling
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200 raises a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
148

Changed in version 3. 7. LIFO order is now guaranteed. In prior versions,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
200 would return an arbitrary key/value pair.

reversed[d]

Return a reverse iterator over the keys of the dictionary. This is a shortcut for

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
204

Mới trong phiên bản 3. 8

setdefault[key[ , default]]

If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default defaults to

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

update[[other]]

Update the dictionary with the key/value pairs from other, overwriting existing keys. Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
150 chấp nhận một đối tượng từ điển khác hoặc một cặp khóa/giá trị có thể lặp lại [dưới dạng bộ dữ liệu hoặc các lần lặp khác có độ dài hai]. If keyword arguments are specified, the dictionary is then updated with those key/value pairs.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
208

values[]

Return a new view of the dictionary’s values. See the documentation of view objects .

An equality comparison between one

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
209 view and another will always return
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38. This also applies when comparing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
209 to itself

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
01

d . other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries. The values of other take priority when d and other share keys

New in version 3. 9

d . = other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable of key/value pairs. The values of other take priority when d and other share keys.

New in version 3. 9

Dictionaries compare equal if and only if they have the same

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 pairs [regardless of ordering]. Order comparisons [‘’] raise
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
88.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion are inserted at the end

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
02

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3. 6.

Dictionaries and dictionary views are reversible

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
03

Changed in version 3. 8. Dictionaries are now reversible.

See also

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
214 can be used to create a read-only view of a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468

Dictionary view objects¶

The objects returned by

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
216,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
209 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
218 are view objects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes

Dictionary views can be iterated over to yield their respective data, and support membership tests

len[dictview]

Return the number of entries in the dictionary

iter[dictview]

Return an iterator over the keys, values or items [represented as tuples of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197] in the dictionary

Các khóa và giá trị được lặp lại theo thứ tự chèn. This allows the creation of

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
220 pairs using
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
221.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
222. Một cách khác để tạo danh sách tương tự là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
223

Iterating views while adding or deleting entries in the dictionary may raise a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
224 or fail to iterate over all entries

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order.

x in dictview

Return

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56 if x is in the underlying dictionary’s keys, values or items [in the latter case, x should be a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 tuple]

reversed[dictview]

Return a reverse iterator over the keys, values or items of the dictionary. Chế độ xem sẽ được lặp lại theo thứ tự ngược lại của phần chèn

Đã thay đổi trong phiên bản 3. 8. Dictionary views are now reversible.

dictview. lập bản đồ

Trả lại một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
214 bao bọc từ điển gốc mà chế độ xem đề cập đến

New in version 3. 10

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
197 pairs are unique and hashable, then the items view is also set-like. [Chế độ xem giá trị không được coi là giống như tập hợp vì các mục thường không phải là duy nhất. ] For set-like views, all of the operations defined for the abstract base class
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
229 are available [for example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
78,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
74, or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
232]

An example of dictionary view usage

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
04

Các loại trình quản lý ngữ cảnh¶

Câu lệnh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 của Python hỗ trợ khái niệm bối cảnh thời gian chạy được xác định bởi trình quản lý bối cảnh. This is implemented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement body is executed and exited when the statement ends

contextmanager. __enter__[]

Nhập bối cảnh thời gian chạy và trả về đối tượng này hoặc đối tượng khác liên quan đến bối cảnh thời gian chạy. Giá trị được phương thức này trả về được liên kết với mã định danh trong mệnh đề

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
234 của câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 bằng trình quản lý ngữ cảnh này

Ví dụ về trình quản lý bối cảnh tự trả về là một đối tượng tệp . File objects return themselves from __enter__[] to allow

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
236 to be used as the context expression in a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement.

Một ví dụ về trình quản lý bối cảnh trả về một đối tượng liên quan là đối tượng được trả về bởi

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
238. Các trình quản lý này đặt ngữ cảnh thập phân đang hoạt động thành một bản sao của ngữ cảnh thập phân ban đầu rồi trả lại bản sao. This allows changes to be made to the current decimal context in the body of the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement without affecting code outside the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement

contextmanager. __exit__[exc_type , exc_val, exc_tb]

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed. Nếu một ngoại lệ xảy ra trong khi thực thi phần thân của câu lệnh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081, thì các đối số chứa loại ngoại lệ, giá trị và thông tin truy nguyên. Mặt khác, cả ba đối số đều là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Returning a true value from this method will cause the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement to suppress the exception and continue execution with the statement immediately following the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081 statement. Mặt khác, ngoại lệ tiếp tục lan truyền sau khi phương thức này thực hiện xong. Các ngoại lệ xảy ra trong quá trình thực thi phương thức này sẽ thay thế bất kỳ ngoại lệ nào xảy ra trong phần thân của câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
081

Ngoại lệ được truyền vào không bao giờ được gọi lại một cách rõ ràng - thay vào đó, phương thức này sẽ trả về một giá trị sai để cho biết rằng phương thức đã hoàn tất thành công và không muốn chặn ngoại lệ đã nêu. Điều này cho phép mã quản lý bối cảnh dễ dàng phát hiện xem phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
246 có thực sự bị lỗi hay không

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond their implementation of the context management protocol. Xem mô-đun

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
247 để biết một số ví dụ

Trình tạo của Python s và trình trang trí

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 cung cấp một cách thuận tiện để triển khai các giao thức này. If a generator function is decorated with the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
248 decorator, it will return a context manager implementing the necessary
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
250 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
246 methods, rather than the iterator produced by an undecorated generator function.

Lưu ý rằng không có vị trí cụ thể nào cho bất kỳ phương thức nào trong số này trong cấu trúc kiểu cho các đối tượng Python trong API Python/C. Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible

Type Annotation Types — Generic Alias , Union

The core built-in types for type annotations are Generic Alias and Union .

Generic Alias Type¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects are generally created by subscripting a class. They are most often used with container classes , such as
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
255 is a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 object created by subscripting the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 class with the argument
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects are intended primarily for use with type annotations .

Note

It is generally only possible to subscript a class if the class implements the special method

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260

A

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 object acts as a proxy for a generic type , implementing parameterized generics.

For a container class, the argument[s] supplied to a subscription of the class may indicate the type[s] of the elements an object contains. For example,

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
262 can be used in type annotations to signify a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6469 in which all the elements are of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423.

For a class which defines

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260 but is not a container, the argument[s] supplied to a subscription of the class will often indicate the return type[s] of one or more methods defined on an object. For example,
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
266 can be used on both the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 data type and the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423 data type

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    269,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    982 will be a re. Match object where the return values of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    271 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    272 will both be of type
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422. We can represent this kind of object in type annotations with the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    252
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    275.

  • If

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    276, [note the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    8247 for
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423],
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6331 will also be an instance of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    280, but the return values of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    281 and
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    282 will both be of type
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6423. In type annotations, we would represent this variety of re. Match objects with
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    284.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects are instances of the class
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
286, which can also be used to create
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 objects directly

T[X, Y, . ]

Creates a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 representing a type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
289 parameterized by types X, Y, and more depending on the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
289 used. For example, a function expecting a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6393 containing
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902 elements

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
05

Another example for mapping objects, using a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468, which is a generic type expecting two type parameters representing the key type and the value type. In this example, the function expects a
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6468 with keys of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 and values of type
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
06

The builtin functions

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
297 and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
298 do not accept
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 types for their second argument

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
07

The Python runtime does not enforce type annotations . This extends to generic types and their type parameters. When creating a container object from a

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252, the elements in the container are not checked against their type. For example, the following code is discouraged, but will run without errors.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
08

Furthermore, parameterized generics erase type parameters during object creation

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
09

Calling

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
32 or
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
33 on a generic shows the parameterized type

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
10

The

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
7769 method of generic containers will raise an exception to disallow mistakes like
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
304

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
11

However, such expressions are valid when type variables are used. The index must have as many elements as there are type variable items in the

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 object’s
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
306.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
12

Standard Generic Classes¶

The following standard library classes support parameterized generics. This list is non-exhaustive

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6394

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6393

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6468

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6469

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6470

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    312

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    313

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    185

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    315

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    183

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    317

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    318

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    319

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    320

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    321

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    322

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    323

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    324

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    325

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    326

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    327

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    328

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    329

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    229

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    331

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    332

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    333

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6396

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6472

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    336

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    337

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    338

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    339

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    340

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    341

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    342

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    343

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    344

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    345

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    346

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    347

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    348

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    349

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    350

  • lại. Mẫu

  • lại. Cuộc thi đấu

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    351

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    352

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    353

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    214

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    355

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    356

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    357

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    358

Thuộc tính đặc biệt của đối tượng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252¶

Tất cả các generic được tham số hóa đều triển khai các thuộc tính chỉ đọc đặc biệt

tên chung. __origin__

Thuộc tính này trỏ đến lớp chung không tham số hóa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
13

tên chung. __args__

Thuộc tính này là một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6394 [có thể có độ dài 1] của các loại chung được truyền cho
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260 ban đầu của lớp chung

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
14

tên chung. __tham số__

Thuộc tính này là một bộ được tính toán chậm [có thể trống] của các biến loại duy nhất được tìm thấy trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
306

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
15

Note

Một đối tượng

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
252 có tham số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
364 có thể không có đúng
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
365 sau khi thay thế vì
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
364 chủ yếu dành cho kiểm tra kiểu tĩnh

genericalias. __unpacked__

Một giá trị logic đúng nếu bí danh đã được giải nén bằng cách sử dụng toán tử

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6400 [xem
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
368]

Mới trong phiên bản 3. 11

See also

PEP 484 - Type Hints

Giới thiệu khung của Python cho các chú thích loại

PEP 585 - Nhập gợi ý Generics trong bộ sưu tập tiêu chuẩn

Giới thiệu khả năng tham số hóa các lớp thư viện tiêu chuẩn, miễn là chúng triển khai phương thức lớp đặc biệt

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
260

Generics , user-defined generics and
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
370

Tài liệu về cách triển khai các lớp chung có thể được tham số hóa trong thời gian chạy và được hiểu bởi trình kiểm tra kiểu tĩnh

New in version 3. 9

Loại liên minh¶

Đối tượng hợp lưu giữ giá trị của phép toán

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
371 [theo bit hoặc] trên nhiều đối tượng loại . Các loại này chủ yếu dành cho chú thích loại . Biểu thức kiểu kết hợp cho phép cú pháp gợi ý kiểu sạch hơn so với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
372.

X . Y . .

Xác định một đối tượng kết hợp chứa các loại X, Y, v.v.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
373 có nghĩa là X hoặc Y. Nó tương đương với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
374. Ví dụ: hàm sau mong đợi một đối số kiểu
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
902

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
16

union_object == other

Các đối tượng kết hợp có thể được kiểm tra sự bình đẳng với các đối tượng kết hợp khác. Chi tiết

  • Liên minh công đoàn bị san bằng

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    17

  • Redundant types are removed

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    18

  • Khi so sánh các công đoàn, thứ tự bị bỏ qua

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    19

  • Nó tương thích với

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    372

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    20

  • Optional types can be spelled as a union with

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    31

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    21

isinstance[obj, union_object]issubclass[obj, union_object]

Các cuộc gọi đến

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
297 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
298 cũng được hỗ trợ với một đối tượng liên kết

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
22

However, union objects containing parameterized generics cannot be used.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
23

Loại tiếp xúc với người dùng cho đối tượng hợp nhất có thể được truy cập từ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
381 và được sử dụng để kiểm tra
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
297. Một đối tượng không thể được khởi tạo từ loại

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
24

Note

Phương thức

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
383 cho các đối tượng kiểu đã được thêm vào để hỗ trợ cú pháp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
373. Nếu một siêu dữ liệu triển khai
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
383, Liên minh có thể ghi đè lên nó

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
25

See also

PEP 604 – PEP đề xuất cú pháp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
373 và kiểu Union

New in version 3. 10

Các loại tích hợp khác¶

Trình thông dịch hỗ trợ một số loại đối tượng khác. Hầu hết trong số này chỉ hỗ trợ một hoặc hai thao tác

Mô-đun¶

Hoạt động đặc biệt duy nhất trên một mô-đun là truy cập thuộc tính.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
387, trong đó m là một mô-đun và tên truy cập vào tên được xác định trong bảng ký hiệu của m. Module attributes can be assigned to. [Lưu ý rằng câu lệnh
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
388 nói đúng ra không phải là một thao tác trên đối tượng mô-đun;
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
389 không yêu cầu đối tượng mô-đun có tên foo tồn tại, thay vào đó, nó yêu cầu định nghĩa [bên ngoài] cho mô-đun có tên foo ở đâu đó. ]

Một thuộc tính đặc biệt của mọi mô-đun là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
390. This is the dictionary containing the module’s symbol table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
390 attribute is not possible [you can write
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
392, which defines
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
393 to be
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
55, but you can’t write
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
395]. Sửa đổi trực tiếp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
390 không được khuyến nghị

Các mô-đun được tích hợp trong trình thông dịch được viết như thế này.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
397. Nếu được tải từ một tệp, chúng được viết là
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
398

Lớp và thực thể lớp¶

Xem Đối tượng, giá trị và loạiĐịnh nghĩa lớp .

Chức năng¶

Các đối tượng hàm được tạo bởi các định nghĩa hàm. Thao tác duy nhất trên một đối tượng hàm là gọi nó.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
399

There are really two flavors of function objects. chức năng tích hợp và chức năng do người dùng xác định. Both support the same operation [to call the function], but the implementation is different, hence the different object types

Xem Định nghĩa hàm để biết thêm thông tin.

Phương pháp¶

Phương thức là các hàm được gọi bằng cách sử dụng ký hiệu thuộc tính. Có hai hương vị. các phương thức tích hợp sẵn [chẳng hạn như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
400 trong danh sách] và các phương thức thể hiện của lớp. Các phương thức tích hợp được mô tả với các loại hỗ trợ chúng

Nếu bạn truy cập một phương thức [một hàm được xác định trong không gian tên lớp] thông qua một thể hiện, bạn sẽ nhận được một đối tượng đặc biệt. một đối tượng phương thức ràng buộc [còn gọi là phương thức thể hiện]. Khi được gọi, nó sẽ thêm đối số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
401 vào danh sách đối số. Các phương thức ràng buộc có hai thuộc tính chỉ đọc đặc biệt.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
402 là đối tượng mà phương thức hoạt động và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
403 là hàm thực thi phương thức. Gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
404 hoàn toàn tương đương với gọi
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
405

Giống như các đối tượng hàm, các đối tượng phương thức ràng buộc hỗ trợ nhận các thuộc tính tùy ý. Tuy nhiên, vì các thuộc tính của phương thức thực sự được lưu trữ trên đối tượng chức năng cơ bản [

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
406], nên việc đặt các thuộc tính của phương thức trên các phương thức bị ràng buộc là không được phép. Attempting to set an attribute on a method results in an
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
407 being raised. In order to set a method attribute, you need to explicitly set it on the underlying function object

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
26

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.

Đối tượng mã¶

Các đối tượng mã được triển khai sử dụng để biểu thị mã Python thực thi được "biên dịch giả" chẳng hạn như thân hàm. Chúng khác với các đối tượng chức năng vì chúng không chứa tham chiếu đến môi trường thực thi toàn cầu của chúng. Các đối tượng mã được trả về bởi hàm

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
408 tích hợp và có thể được trích xuất từ ​​các đối tượng hàm thông qua thuộc tính
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
409 của chúng. Xem thêm mô-đun
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
410

Việc truy cập vào

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
409 sẽ tạo ra một sự kiện kiểm tra
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
412 với các đối số
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
413 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
414.

Một đối tượng mã có thể được thực thi hoặc đánh giá bằng cách chuyển đối tượng đó [thay vì chuỗi nguồn] tới các hàm dựng sẵn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
415 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
416

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thêm thông tin.

Nhập đối tượng¶

Loại đối tượng đại diện cho các loại đối tượng khác nhau. Loại đối tượng được truy cập bằng chức năng tích hợp sẵn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
417. Không có thao tác đặc biệt nào trên các loại. Mô-đun tiêu chuẩn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
418 xác định tên cho tất cả các loại tích hợp tiêu chuẩn

Các loại được viết như thế này.

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
419

Đối tượng Null¶

Đối tượng này được trả về bởi các hàm không trả về giá trị một cách rõ ràng. Nó không hỗ trợ các hoạt động đặc biệt. Có chính xác một đối tượng null, tên là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31 [tên dựng sẵn].
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
421 tạo ra cùng một singleton

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
31

Đối tượng Dấu chấm lửng¶

Đối tượng này thường được sử dụng bằng cách cắt lát [xem Cắt lát ]. Nó không hỗ trợ các hoạt động đặc biệt. Có chính xác một đối tượng dấu chấm lửng, tên là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423 [tên tích hợp].
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
424 tạo ra đĩa đơn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423.

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
423 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
427

The NotImplemented Object¶

Đối tượng này được trả về từ phép so sánh và phép toán nhị phân khi chúng được yêu cầu thao tác trên các loại mà chúng không hỗ trợ. Xem So sánh để biết thêm thông tin. There is exactly one

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
428 object.
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
429 tạo ra cá thể đơn lẻ.

Nó được viết là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
428

Giá trị Boolean¶

Giá trị Boolean là hai đối tượng hằng số

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56. Chúng được sử dụng để biểu thị giá trị thật [mặc dù các giá trị khác cũng có thể được coi là sai hoặc đúng]. In numeric contexts [for example when used as the argument to an arithmetic operator], they behave like the integers 0 and 1, respectively. Có thể sử dụng hàm tích hợp sẵn
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
433 để chuyển đổi bất kỳ giá trị nào thành Boolean, nếu giá trị đó có thể được hiểu là giá trị thực [xem phần Kiểm tra giá trị thực above].

Chúng được viết lần lượt là

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
38 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
56

Đối tượng bên trong¶

Xem Hệ thống phân cấp loại tiêu chuẩn để biết thông tin này. Nó mô tả các đối tượng khung ngăn xếp, đối tượng truy nguyên và đối tượng lát.

Thuộc tính đặc biệt¶

Việc triển khai thêm một vài thuộc tính chỉ đọc đặc biệt cho một số loại đối tượng, nơi chúng có liên quan. Một số trong số này không được báo cáo bởi hàm tích hợp

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
436

đối tượng. __dict__

Từ điển hoặc đối tượng ánh xạ khác được sử dụng để lưu trữ các thuộc tính [có thể ghi] của đối tượng

ví dụ. __class__

Lớp mà một thể hiện của lớp thuộc về

lớp. __base__

Bộ các lớp cơ sở của một đối tượng lớp

định nghĩa. __name__

Tên của lớp, hàm, phương thức, bộ mô tả hoặc thể hiện của trình tạo

định nghĩa. __qualname__

The tên đủ điều kiện của lớp, hàm, phương thức, bộ mô tả hoặc thể hiện trình tạo.

New in version 3. 3

lớp. __mro__

This attribute is a tuple of classes that are considered when looking for base classes during method resolution

lớp. mro[]

Phương thức này có thể được ghi đè bởi một siêu dữ liệu để tùy chỉnh thứ tự phân giải phương thức cho các phiên bản của nó. Nó được gọi khi khởi tạo lớp và kết quả của nó được lưu trữ trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
437

lớp. __phân lớp__[]

Mỗi lớp giữ một danh sách các tham chiếu yếu đến các lớp con trực tiếp của nó. Phương thức này trả về một danh sách tất cả các tham chiếu vẫn còn tồn tại. Danh sách theo thứ tự định nghĩa. Thí dụ

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
27

Giới hạn độ dài chuyển đổi chuỗi số nguyên¶

CPython có giới hạn toàn cầu cho việc chuyển đổi giữa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 để giảm thiểu các cuộc tấn công từ chối dịch vụ. Giới hạn này chỉ áp dụng cho cơ số thập phân hoặc cơ số không phải lũy thừa hai. Chuyển đổi thập lục phân, bát phân và nhị phân là không giới hạn. Giới hạn có thể được cấu hình

Loại ________ 6901 trong Python là một số có độ dài tùy ý được lưu trữ ở dạng nhị phân [thường được gọi là “bignum”]. Không tồn tại thuật toán nào có thể chuyển đổi một chuỗi thành một số nguyên nhị phân hoặc một số nguyên nhị phân thành một chuỗi trong thời gian tuyến tính, trừ khi cơ số là lũy thừa của 2. Ngay cả các thuật toán được biết đến nhiều nhất cho cơ số 10 cũng có độ phức tạp bậc hai. Chuyển đổi một giá trị lớn chẳng hạn như

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
441 có thể mất hơn một giây trên CPU nhanh

Giới hạn kích thước chuyển đổi cung cấp một cách thiết thực để tránh CVE-2020-10735

Giới hạn được áp dụng cho số ký tự chữ số trong chuỗi đầu vào hoặc đầu ra khi sử dụng thuật toán chuyển đổi phi tuyến tính. Dấu gạch dưới và dấu không được tính vào giới hạn

Khi một hoạt động sẽ vượt quá giới hạn, một

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
977 được nâng lên

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
28

Giới hạn mặc định là 4300 chữ số như được cung cấp trong

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
443. Giới hạn thấp nhất có thể được định cấu hình là 640 chữ số như được cung cấp trong
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
444

xác minh

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
29

Mới trong phiên bản 3. 11

Affected APIs¶

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
901 và
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6422 hoặc
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6423

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    448 with default base 10

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    449 cho tất cả các cơ số không phải là lũy thừa của 2

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    450

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    451

  • any other string conversion to base 10, for example

    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    452,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    453, or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    454

The limitations do not apply to functions with a linear algorithm

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    449 with base 2, 4, 8, 16, or 32

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    456 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    457

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    458,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    459,
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    460

  • Format Specification Mini-Language for hex, octal, and binary numbers.

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422 đến
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    902

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    6422 to
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    908

Định cấu hình giới hạn¶

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    465, e. g.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    466 để đặt giới hạn thành 640 hoặc
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    467 để tắt giới hạn

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    468, e. g.
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    469

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    470 contains the value of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    465 or
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    468. If both the env var and the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    473 option are set, the
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    473 option takes precedence. A value of -1 indicates that both were unset, thus a value of
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    443 was used during initialization

From code, you can inspect the current limit and set a new one using these

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
476 APIs

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    477 và
    def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    478 là một getter và setter cho giới hạn toàn bộ thông dịch viên. Phiên dịch viên phụ có giới hạn riêng của họ

Information about the default and minimum can be found in

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
479

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    443 is the compiled-in default limit

  • def bit_length[self]:
        s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
        s = s.lstrip['-0b'] # remove leading zeros and minus sign
        return len[s]       # len['100101'] --> 6
    
    444 is the lowest accepted value for the limit [other than 0 which disables it]

Mới trong phiên bản 3. 11

Caution

Setting a low limit can lead to problems. Mặc dù hiếm gặp, mã tồn tại chứa các hằng số nguyên ở dạng thập phân trong nguồn của chúng vượt quá ngưỡng tối thiểu. A consequence of setting the limit is that Python source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup time or import time or even at installation time - anytime an up to date

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
482 does not already exist for the code. A workaround for source that contains such large constants is to convert them to
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
6312 hexadecimal form as it has no limit

Kiểm tra ứng dụng của bạn kỹ lưỡng nếu bạn sử dụng giới hạn thấp. Đảm bảo các thử nghiệm của bạn chạy với giới hạn được đặt sớm thông qua môi trường hoặc cờ để nó áp dụng trong quá trình khởi động và thậm chí trong bất kỳ bước cài đặt nào có thể gọi Python để biên dịch trước nguồn

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
484 thành tệp
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
482

Cấu hình đề xuất¶

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
443 mặc định dự kiến ​​sẽ hợp lý cho hầu hết các ứng dụng. Nếu ứng dụng của bạn yêu cầu một giới hạn khác, hãy đặt giới hạn đó từ điểm vào chính của bạn bằng cách sử dụng mã bất khả tri của phiên bản Python vì các API này đã được thêm vào trong các bản phát hành bản vá bảo mật trong các phiên bản trước 3. 11

Example

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
30

Nếu bạn cần tắt hoàn toàn, hãy đặt thành

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
42

chú thích

1

Thông tin bổ sung về các phương pháp đặc biệt này có thể được tìm thấy trong Hướng dẫn tham khảo Python [ Tùy chỉnh cơ bản ].

2

Kết quả là, danh sách

def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
488 được coi là bằng với
def bit_length[self]:
    s = bin[self]       # binary representation:  bin[-37] --> '-0b100101'
    s = s.lstrip['-0b'] # remove leading zeros and minus sign
    return len[s]       # len['100101'] --> 6
489 và tương tự đối với các bộ dữ liệu

3

Chúng phải có vì trình phân tích cú pháp không thể cho biết loại toán hạng

4[1,2,3,4]

Các ký tự viết hoa là những ký tự có thuộc tính danh mục chung là một trong số “Lu” [Chữ cái, chữ hoa], “Ll” [Chữ cái, chữ thường] hoặc “Lt” [Chữ cái, chữ hoa tiêu đề]

5[1,2]

Do đó, để chỉ định dạng một bộ dữ liệu, bạn nên cung cấp một bộ dữ liệu đơn có phần tử duy nhất là bộ dữ liệu được định dạng

Chủ Đề