Starch 1500 là gì

1. Bhuiyan, S. H., M. Kitaoka, and K. Hayashi. 2003. A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B 22:45-53. [Google Scholar]

2. Binnema, D. J., and G. J. W. Euverink. 1998. Use of modified starch as an agent for forming a thermoreversible gel. Patent application WO9815347.

3. Bjork, A., B. Dalhus, D. Mantzilas, V. G. Eijsink, and R. Sirevag. 2003. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface. J. Mol. Biol. 334:811-821. [PubMed] [Google Scholar]

4. Boos, W., and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62:204-229. [PMC free article] [PubMed] [Google Scholar]

5. Cason, C. J. 2002. Pov-Ray for Windows, 3.5 ed. Pov-Team, Williamstown, Victoria, Australia.

6. Chi, Y. I., L. A. Martinez-Cruz, J. Jancarik, R. V. Swanson, D. E. Robertson, and S. H. Kim. 1999. Crystal structure of the β-glucosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. FEBS Lett. 445:375-383. [PubMed] [Google Scholar]

7. Colleoni, C., D. Dauville, G. Mouille, A. Bulon, D. Gallant, B. Bouchet, M. Morell, M. Samuel, B. Delrue, C. d'Hulst, C. Bliard, J. M. Nuzillard, and S. Ball. 1999. Genetic and biochemical evidence for the involvement of alpha-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol. 120:993-1004. [PMC free article] [PubMed] [Google Scholar]

8. Colleoni, C., D. Dauville, G. Mouille, M. Morell, M. Samuel, M. C. Slomiany, L. Linard, F. Wattebled, C. d'Hulst, and S. Ball. 1999. Biochemical characterization of the Chlamydomonas reinhardtii alpha-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol. 120:1005-1014. [PMC free article] [PubMed] [Google Scholar]

9. Cornish-Bowden, A. 1999. Fundamentals of enzyme kinetics, revised ed. Portland Press, Cambridge, England.

10. Coutinho, P. M., and B. Henrissat. 1999. Carbohydrate-active enzymes: an integrated database approach, p. 3-12. In H. J. Gilbert, G. Davies, B. Henrissat, and B. Svensson [ed.], Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, United Kingdom.

11. Critchley, J. H., S. C. Zeeman, T. Takaha, A. M. Smith, and S. M. Smith. 2001. A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J. 26:89-100. [PubMed] [Google Scholar]

12. Davies, G. J., K. S. Wilson, and B. Henrissat. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321:557-559. [Letter.] [PMC free article] [PubMed]

13. DeDecker, B. S., R. O'Brien, P. J. Fleming, J. H. Geiger, S. P. Jackson, and P. B. Sigler. 1996. The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. J. Mol. Biol. 264:1072-1084. [PubMed] [Google Scholar]

14. Edgar, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. [PMC free article] [PubMed] [Google Scholar]

15. Fersht, A. 1999. Structure and mechanism in protein science. W. H. Freeman and Company, New York, N.Y.

16. Fitz-Gibbon, S. T., H. Ladner, U. J. Kim, K. O. Stetter, M. I. Simon, and J. H. Miller. 2002. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA 99:984-989. [PMC free article] [PubMed] [Google Scholar]

17. Forterre, P., C. Brochier, and H. Philippe. 2002. Evolution of the Archaea. Theor. Popul. Biol. 61:409-422. [PubMed] [Google Scholar]

18. Guex, N., and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714-2723. [PubMed] [Google Scholar]

19. Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. [PubMed] [Google Scholar]

20. Heinrich, P., W. Huber, and W. Liebl. 1994. Expression in Escherichia coli and structure of the gene encoding 4-α-glucanotransferase from Thermotoga maritima. Classification of maltodextrin glycosyltransferases into two distantly related enzyme subfamilies. Syst. Appl. Microbiol. 17:297-305. [Google Scholar]

21. Imamura, H., S. Fushinobu, B. S. Jeon, T. Wakagi, and H. Matsuzawa. 2001. Identification of the catalytic residue of Thermococcus litoralis 4-alpha-glucanotransferase through mechanism-based labeling. Biochemistry 40:12400-12406. [PubMed] [Google Scholar]

22. Imamura, H., S. Fushinobu, M. Yamamoto, T. Kumasaka, B. S. Jeon, T. Wakagi, and H. Matsuzawa. 2003. Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J. Biol. Chem. 278:19378-19386. [PubMed] [Google Scholar]

23. Jane, J., Y. Y. Chen, L. F. Lee, A. E. McPherson, K. S. Wong, M. Radosavljevic, and T. Kasemsuwan. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76:629-637. [Google Scholar]

24. Jeon, B. S., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi, and H. Matsuzawa. 1997. 4-Alpha-glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralisenzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248:171-178. [PubMed] [Google Scholar]

25. Jiang, Y., S. Nock, M. Nesper, M. Sprinzl, and P. B. Sigler. 1996. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus. Biochemistry 35:10269-10278. [PubMed] [Google Scholar]

26. Jones, G., and W. J. Whelan. 1969. The action pattern of D-enzyme, a transmaltodextrinylase from potato. Carbohydr. Res. 9:483-490. [Google Scholar]

27. Kaper, T., M. J. van der Maarel, G. J. Euverink, and L. Dijkhuizen. 2004. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 32:279-282. [PubMed] [Google Scholar]

28. Kengen, S., and A. Stams. 1994. An extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus; a comparison with other glycosidases. Biocatalysis 11:79-88. [Google Scholar]

29. Kim, M. J., S. B. Lee, H. S. Lee, S. Y. Lee, J. S. Baek, D. Kim, T. W. Moon, J. F. Robyt, and K. H. Park. 1999. Comparative study of the inhibition of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Arch. Biochem. Biophys. 371:277-283. [PubMed] [Google Scholar]

30. Leemhuis, H., B. W. Dijkstra, and L. Dijkhuizen. 2003. Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. Eur. J. Biochem. 270:155-162. [PubMed] [Google Scholar]

31. Leemhuis, H., J. C. M. Uitdehaag, H. J. Rozeboom, B. W. Dijkstra, and L. Dijkhuizen. 2002. The remote substrate binding subsite-6 in cyclodextrin-glycosyltransferase controls the transferase activity of the enzyme via an induced-fit mechanism. J. Biol. Chem. 277:1113-1119. [PubMed] [Google Scholar]

32. Liebl, W., R. Feil, J. Gabelsberger, J. Kellermann, and K. H. Schleifer. 1992. Purification and characterization of a novel thermostable 4-alpha-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 207:81-88. [PubMed] [Google Scholar]

33. MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta 1546:1-20. [PubMed] [Google Scholar]

34. Mallick, P., D. R. Boutz, D. Eisenberg, and T. O. Yeates. 2002. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc. Natl. Acad. Sci. USA 99:9679-9684. [PMC free article] [PubMed] [Google Scholar]

35. Meissner, H., and W. Liebl. 1998. Thermotoga maritima maltosyltransferase, a novel type of maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. Eur. J. Biochem. 258:1050-1058. [PubMed] [Google Scholar]

36. Meyer, J., M. D. Clay, M. K. Johnson, A. Stubna, E. Munck, C. Higgins, and P. Wittung-Stafshede. 2002. A hyperthermophilic plant-type [2Fe-2S] ferredoxin from Aquifex aeolicus is stabilized by a disulfide bond. Biochemistry 41:3096-3108. [PubMed] [Google Scholar]

37. Mosi, R., H. Sham, J. C. M. Uitdehaag, R. Ruiterkamp, B. W. Dijkstra, and S. G. Withers. 1998. Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase. Biochemistry 37:17192-17198. [PubMed] [Google Scholar]

38. Nielsen, M. S., P. Harris, B. L. Ooi, and H. E. Christensen. 2004. The 1.5 A resolution crystal structure of [Fe[3]S[4]]-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus. Biochemistry 43:5188-5194. [PubMed] [Google Scholar]

39. Ogasahara, K., N. N. Khechinashvili, M. Nakamura, T. Yoshimoto, and K. Yutani. 2001. Thermal stability of pyrrolidone carboxyl peptidases from the hyperthermophilic archaeon, Pyrococcus furiosus. Eur. J. Biochem. 268:3233-3242. [PubMed] [Google Scholar]

40. Oudjeriouat, N., Y. Moreau, M. Santimone, B. Svensson, G. Marchis-Mouren, and V. Desseaux. 2003. On the mechanism of alpha-amylase. Eur. J. Biochem. 270:3871-3879. [PubMed] [Google Scholar]

41. Przylas, I., Y. Terada, K. Fujii, T. Takaha, W. Saenger, and N. Strater. 2000. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans. Eur. J. Biochem. 267:6903-6913. [PubMed] [Google Scholar]

42. Przylas, I., K. Tomoo, Y. Terada, T. Takaha, K. Fujii, W. Saenger, and N. Strater. 2000. Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. J. Mol. Biol. 296:873-886. [PubMed] [Google Scholar]

43. Rüegg, U. T., and J. Rudinger. 1977. Reductive cleavage of cystine disulfides with tributyl phosphine. Methods Enzymol. 47:111-116. [PubMed] [Google Scholar]

44. Siebers, B., B. Tjaden, K. Michalke, C. Dorr, H. Ahmed, M. Zaparty, P. Gordon, C. W. Sensen, A. Zibat, H. P. Klenk, S. C. Schuster, and R. Hensel. 2004. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J. Bacteriol. 186:2179-2194. [PMC free article] [PubMed] [Google Scholar]

45. Sogaard, M., A. Kadziola, R. Haser, and B. Svensson. 1993. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J. Biol. Chem. 268:22480-22484. [PubMed] [Google Scholar]

46. Spiro, G. 1966. Analysis of sugars found in glycoproteins. Methods Enzymol. 8:3-26. [Google Scholar]

47. Takaha, T., M. Yanase, S. Okada, and S. M. Smith. 1993. Disproportionating enzyme [4-alpha-glucanotransferase; EC 2.4.1.25] of potato. Purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268:1391-1396. [PubMed] [Google Scholar]

48. Takaha, T., M. Yanase, H. Takata, S. Okada, and S. M. Smith. 1998. Cyclic glucans produced by the intramolecular transglycosylation activity of potato D-enzyme on amylopectin. Biochem. Biophys. Res. Commun. 247:493-497. [PubMed] [Google Scholar]

49. Takaha, T., M. Yanase, H. Takata, S. Okada, and S. M. Smith. 1996. Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 271:2902-2908. [PubMed] [Google Scholar]

50. Terada, Y., K. Fujii, T. Takaha, and S. Okada. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose. Appl. Environ. Microbiol. 65:910-915. [PMC free article] [PubMed] [Google Scholar]

51. Uitdehaag, J. C. M., R. Mosi, K. H. Kalk, B. A. van der Veen, L. Dijkhuizen, S. G. Withers, and B. W. Dijkstra. 1999. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat. Struct. Biol. 6:432-436. [PubMed] [Google Scholar]

52. Van der Maarel, M. J. E. C., G. J. W. Euverink, D. J. Binnema, H. T. P. Bos, and J. Bergsma. 2000. Amylomaltase from the hyperthermophilic bacterium Thermus thermophilus: enzyme characteristics and application in the starch industry. Med. Fac. Landbouww Univ. Gent 65/3a:231-234. [Google Scholar]

53. van der Veen, B. A., G. J. van Alebeek, J. C. M. Uitdehaag, B. W. Dijkstra, and L. Dijkhuizen. 2000. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans [strain 251] proceed via different kinetic mechanisms. Eur. J. Biochem. 267:658-665. [PubMed] [Google Scholar]

54. Viles, F. J., and L. Silverman. 1949. Determination of starch and celluloses with anthrone. Anal. Chem. 21:950-953. [Google Scholar]

55. Volkl, P., R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, and K. O. Stetter. 1993. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 59:2918-2926. [PMC free article] [PubMed] [Google Scholar]

56. von Mering, C., M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel. 2003. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31:258-261. [PMC free article] [PubMed] [Google Scholar]

57. Vriend, G. 1990. What If: a molecular modeling and drug design program. J. Mol. Graph. 8:52-56. [PubMed] [Google Scholar]

58. Vriend, G. 3June2003, posting date. The WhatIf Webserver interface. [Online.] //www.cmbi.kun.nl/gv/servers/WIWWWI/.

59. Wattebled, F., J. P. Ral, D. Dauvillee, A. M. Myers, M. G. James, R. Schlichting, C. Giersch, S. G. Ball, and C. D'Hulst. 2003. STA11, a Chlamydomonas reinhardtii locus required for normal starch granule biogenesis, encodes disproportionating enzyme. Further evidence for a function of alpha-1,4 glucanotransferases during starch granule biosynthesis in green algae. Plant Physiol. 132:137-145. [PMC free article] [PubMed] [Google Scholar]

60. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576-4579. [PMC free article] [PubMed] [Google Scholar]

61. Xavier, K. B., R. Peist, M. Kossmann, W. Boos, and H. Santos. 1999. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J. Bacteriol. 181:3358-3367. [PMC free article] [PubMed] [Google Scholar]

62. Yoon, S. H., and J. F. Robyt. 2003. Study of the inhibition of four alpha amylases by acarbose and its 4-alpha-maltohexaosyl and 4-alpha-maltododecaosyl analogues. Carbohydr. Res. 338:1969-1980. [PubMed] [Google Scholar]

63. Zona, R., F. Chang-Pi-Hin, M. J. O'Donohue, and S. Janecek. 2004. Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur. J. Biochem. 271:2863-2872. [PubMed] [Google Scholar]

Page 2

Half-life of thermal inactivation of PyAMase at various temperatures in the presence and absence of 2 mM DTTa

Temperature [°C]Half-life [min] of PyAMase activity DTT+ DTT
95107 ± 253.2 ± 0.4
89114 ± 3778 ± 10
87506 ± 141115 ± 19
80NDb191 ± 57

Video liên quan

Chủ Đề