Anten thu bao nhiêu sóng trong không gian

Có thể nói trong việc truyền dữ liệu không dây thì anten là một thiết bị linh kiện khá quan trọng. Ở bài viết này BKAII sẽ cùng các bạn nghiên cứu một số vấn đề liên quan đến linh kiện này nhé!

Anten là một thiết bị linh kiện khá quan trọng, có khả năng bức xạ và thu nhận sóng điện từ.

Chức năng của anten

  • Khi kết nối với máy phát, nó thu thập các tín hiệu AC và gửi thẳng, hoặc phát xạ sóng RF đi theo mô hình cụ thể cho từng loại ăng-ten.
  • Khi kết nối với máy thu, anten lấy sóng RF mà nó nhận được và gửi tín hiệu AC cho máy thu.
  • Việc truyền RF của một anten thường được so sánh hoặc tham chiếu đến một bộ bức xạ đẳng hướng.
  • Có hai cách để tăng công suất phát ra một ăng-ten
  • Tạo ra công suất mạnh hơn tại máy phát [không ưu tiên vì tốn kém].
  • Truyền hoặc hội tụ tín hiệu RF được phát xạ từ anten.

Nguyên lý hoạt động của anten

Anten chuyển đổi năng lượng điện sang sóng vô tuyến đối với anten phát hay chuyển đổi sóng vô tuyến sang năng lượng điện đối với anten nhận.

Kích thước vật lý [hay chiều dài] của anten liên quan trực tiếp đến tần số mà anten có thể thu hay phát sóng.

Độ khuếch đại của anten

Độ khuếch đại anten là kết quả việc tập trung phát sóng vô tuyến vào một chùm hẹp hơn.

Bằng việc giới hạn độ rộng chùm [beamwidth] tính theo độ ngang [horizontal] và độ dọc [vertical] mà vẫn giữ nguyên công suất phát sẽ cho một sóng vô tuyến được phát đi xa hơn.

Đặc trưng của anten

Phân cực anten

Mặc dù ít được chú ý đến nhưng nó đóng vai trò quan trọng trong việc truyền thông tin. Liên kết phân cực phù hợp là rất quan trọng trong khi cài đặt bất kỳ loại anten nào. Khi sóng tỏa ra từ một anten, biên độ của sóng có thể dao động theo chiều dọc hoặc chiều ngang. Điều quan trọng là phải có sự phân cực của việc truyền và nhận ăng-ten được định hướng giống nhau để nhận được tín hiệu mạnh nhất có thể. Cho dù các ăng-ten được cài đặt với phân cực nằm ngang hoặc thẳng đứng thường là không thích hợp, miễn là cả hai ăng-ten liên kết với cùng phân cực.

Phân tập anten

Các mạng không dây, đặc biệt là mạng lưới trong nhà, dễ bị nhiễu tín hiệu. Dể giúp bù đắp cho những ảnh hưởng của đa đường, anten phân tập, còn được gọi là phân tập không gian, thường được thực hiện trong các thiết bị mạng không dây như là các điểm truy cập. Anten phân tập tồn tại khi một điểm truy cập có hai anten và máy thu hoạt động cùng nhau để giảm thiểu các tác động tiêu cực của đa đường.

Bởi vì các bước sóng của mạng 802.11 với độ dài nhỏ hơn 5 inch, ăng-ten có thể được đặt rất gần nhau và vẫn cho phép anten phân tập có hiệu quả. Khi điểm truy cập cảm nhận được một tín hiệu RF, nó sẽ so sánh dấu hiệu cho thấy nó đang nhận được trên cả hai anten và sử dụng anten nào có cường độ tín hiệu cao hơn để nhận được khung dữ liệu. Mẫu này được thực hiện trên frame-by-frame cơ bản, chọn bất kỳ ăng-ten nào có cường độ tín hiệu cao hơn

Hầu hết các vô tuyến pre-802.11n sử dụng thiết bị chuyển đổi phân tập. Khi nhận được tín hiệu truyền đến, chuyển mạch phân tập nghe với nhiều ăng-ten. Nhiều bản sao của cùng một tín hiệu đến các ăng-ten thu với biên độ khác nhau. Các tín hiệu với biên độ tốt nhất được lựa chọn, và các tín hiệu khác được bỏ qua.

Phương pháp lắng nghe các tín hiệu nhận tốt nhất, được biết đến như là một phân tập thu. Sự chuyển mạch phân tập cũng được sử dụng khi phát nhưng chỉ một anten được sử dụng. Máy phát sẽ truyền ra ngoài anten phân tập nơi mà tín hiệu biên độ tốt nhất được nghe lần cuối. Phương pháp truyền bên ngoài anten nơi mà tín hiệu thu tốt nhất cuối cùng được nghe thấy được biết đến là phân tập phát.

Phân loại anten

Anten là thiết bị được sử dụng để chuyển đổi tín hiệu tần số cao [RF] trên đường truyền dẫn sang dạng sóng để phát vào không khí.

Anten vô tuyến có 3 loại chính:

  • Đẳng hướng – vô hướng [Omni-directional].
  • Định hướng – có hướng [Semi-directional].
  • Định hướng cao [Highly-directional].

Trên đây là một vài tìm hiểu cơ bản về angten. Chúng ta sẽ có những tìm hiểu chi tiết hơn ở những bài viết sau các bạn nhớ theo dõi nhé. Có thắc mắc hay cần thêm thông tin gì các bạn liên hệ BKAII nhé!

"BKAII - Thiết bị truyền thông TỐT nhất với giá CẠNH TRANH nhất!"

Page 2

  • Home
  • Giới thiệu
  • Sản Phẩm
  • Giải pháp
  • Tin Tức
  • Liên Hệ

62LÝ THUYẾT CHUNG VỀ ANTEN 4.1 GIỚI THIỆU CHUNG 4.1.1 Các chủ đề được trình bày trong chương - Vị trí của anten trong thông tin vô tuyến - Các tham số cơ bản của anten - Các nguồn bức xạ nguyên tố 4.1.2 Hướng dẫn - Hoc kỹ các phần được trình bày trong chương - Tham khảo thêm [1], [2] - Trả lời các câu hỏi và bài tập 4.1.3 Mục đích của chương - Hiểu được ví trí của anten trong thông tin vô tuyến - Hiểu về các tham số của anten - Hiểu về các nguồn bức xạ nguyên tố [các anten đơn giản nhất] 4.2. MỞ ĐẦU Sóng điện từ có thể truyền dẫn bằng hai phương pháp: - Truyền dẫn trong các thiết bị định hướng như đường dây song hành, cáp đồng trục, ống dẫn sang, cáp sợi quang... Khi truyền lan trong các hệ thống này sóng điện từ bị giới hạn trong khoảng không gian của thiết bị và được gọi là sóng điện từ ràng buộc. - Bức xạ sóng ra không gian để sóng truyền đi trong các môi trường thực và được gọi là sóng điện từ tự do. Thiết bị dùng để chuyển đổi sóng điện từ ràng buộc thành sóng điện từ tự do và ngược lại được gọi là anten. ở chương này ta sẽ xem xét phân tích vai trò , hoạt động, các thông số kỹ thuật cơ bản của anten. 4.2.1 Vị trí của anten trong thông tin vô tuyến. Anten là một hệ thống cấu trúc có khả năng bức xạ và thu nhận các sóng điện từ. Anten là thiết bị không thể thiếu được trong các hệ thống thông tin vô tuyến điện, bởi vì thông tin vô tuyến 63sử dụng sóng điện từ bức xạ ra không gian để truyền lan từ nơi phát đến nơi thu.Một hệ thống truyền dẫn vô tuyến đơn giản bao gồm máy phát, máy thu, anten phát và anten thu [hình 4.1]. Ở nơi phát, sóng điện từ cao tần được truyền dẫn từ máy phát đến anten thông qua hệ thống fidơ dưới dạng sóng điện từ ràng buộc. Anten phát có nhiện vụ biến đổi sóng điện từ ràng buộc trong fidơ thành sóng từ tự do bức xạ ra không gian. Cấu tạo của anten quyết định đặc tính biến đổi năng lượng điện từ nói trên. Tại nơi thu, anten thu làm nhiệm vụ ngược lại với anten phát, nghĩa là tiếp nhận sóng điện từ tự do từ không gian bên ngoài và biến đổi chúng thành sóng điện từràng buộc. Sóng này sẽ được truyền theo fidơ tới máy thu. Yêu cầu của thiết bị anten - fidơ là phải thực hiện việc truyền và biến đổi năng lượng sóng điện từ với hiệu suất cao nhất và không gây méo dạng tín hiệu. Anten sử dụng trong các hệ thống thông tin khác nhau phải có những yêu cầu khác nhau. Trong các hệ thống thông tin quảng bá như phát thanh, truyền hình, ... thì yêu cầu anten phải có bức xạ đồng đều trong mặt phẳng ngang [mặt đất] để cho mọi hướng đều có thể thu được tín hiệu của đài phát. Nhưng trong mặt phẳng thẳng đứng anten lại phải có bức xạ định hướng sao cho hướng cực đại trong mặt phẳng này song song với mặt đất, để máy thu thu được tín hiệu lớn nhất và giảm được năng lượng bức xạ hướng không cần thiết, giảm được công suất máy phát, giảm được can nhiễu. Tuy nhiên, trong các hệ thống thông tin vô tuyến điểm tới điểm như hệ thống thông tin vi ba, thông tin vệ tinh, rađa... yêu cầu anten anten bức xạ với tính hướng cao, nghĩa là sóng bức xạ chỉ tập trung vào một góc rất hẹp trong không gian. Như vậy nhiệm vụ của anten không chỉ đơn thuần là chuyển đổi sóng điện từ ràng buộc thành sóng điện từ tự do và ngược lại mà phải bức xạ sóng điện từ theo những hướng nhất định với các yêu cầu kỹ thuật đề ra. Anten có thể được phân loại theo nhiều cách khác nhau, thường theo các cách phân loại sau: - Công dụng của anten: Anten có thể được phân thành anten phát, anten thu hoặc anten phát + thu dùng chung. Thông thường anten làm nhiện vụ cho cả phát và thu. - Dải tần công tác của anten: Anten sóng dài, anten sóng trung, anten sóng ngắn và anten sóng cực ngắn. - Cấu trúc của anten: - Đồ thị phương hướng của anten: anten vô hướng và anten có hướng - Phương pháp cấp điện cho anten: anten đối xứng, anten không đối xứng Đầu ra nhận tin Nguồn tin Thiết bị xử lý tín hiệu Máy phát Máy thu Thiết bị xử lý tín hiệu Anten phát Anten thu Hình 4.1. Hệ thống truyền tin đơn giản 644.2.2 Quá trình vật lý của sự bức xạ sóng điện từ Về nguyên lý, bất kỳ một hệ thống điện từ nào có khả năng tạo ra điện trường hoặc từ trường biến thiên đều có bức xạ sóng điện từ. Tuy nhiên trong thực tế, sự bức xạ chỉ xảy ra trong những điều kiện nhất định. Ví dụ xét một mạch dao động L, C như chỉ ra trong hình 4.2a, nếu đặt vào một sức điện động biến đổi thì giữa hai má tụ sẽ phát sinh điện trường biến thiên, còn không gian trong lòng cuộn dây sẽ phát sinh từ trường biến thiên. Nhưng trường điện từ này hầu như không bức xạ ra bên ngoài mà bị ràng buộc bởi các phần tử của mạch. Dòng điện dịch chuyển qua tụ điện theo đường ngắn nhất trong khoảng không gian giữa hai má tụ, nên năng lượng điện trường bị giới hạn trong khoảng không gian ấy. Còn năng lượng từ trường tập trung chủ yếu trong lòng cuộn dây. Năng lượng của toàn bộ hệ thống sẽ được bảo toàn nếu không có tổn hao nhiệt trong dây dẫn của cuộn cảm và tổn hao trong chất điện môi trong tụ điện. Hình 4.2. Quá trình bức xạ sóng điện từ Nếu mở rộng khoảng cách giữa hai má tụ điện như chỉ trong hình 4.2b thì dòng điện dịch được biểu thị trùng với đường sức điện trường, sẽ không dịch chuyển trong khoảng không gian giữa hai má tụ điện mà mộ bộ phận sẽ lan toả ra môi trường bên ngoài và có thể truyền tới những điểm khá xa nguồn [nguồn sinh ra điện trường chính là các điện tích trên hai má tụ điện]. Tiếp tục mở rộng khoảng cách giữa hai má tụ điện như hình 4.2c thì dòng điện dịch sẽ lan toả càng nhiều và tạo ra điện trường biến thiên với biên độ lớn hơn trong khoảng không gian bên ngoài. Điện trường biến thiên được truyền lan với vận tốc ánh sáng. Khi đạt tới một khoảng cách khá xa nguồn, chúng sẽ tự khép kín và không bị ràng buộc bởi nguồn, nghĩa là không còn liên hệ với điện tích trên hai má tụ điện nữa. Còn các đường sức ở gần tụ điện không tự khép mà bắt nguồn từ điện tích dương trên má tụ và kết thúc ở má tụ có điện tích âm. Do đó giá trị của điện trường ở những điểm nằm trên đường sức ấy sẽ biến thiên theo sự biến thiên của điện tích trên hai má tụ điện. Còn những điểm ở cách xa nguồn, ví dụ tại điển M có thể đạt một giá trị nào đó trong 65lúc điện tích trên hai má tụ điện lại biến đổi qua giá trị không. Các đường sức tự khép kín, nghĩa là đã hình thành một điện trờng xoáy. Theo quy luật biến thiên [được biểu thị bởi các phương trình Maxwell] thì điện trường xoáy sẽ tạo ra một từ trường biến đổi, từ trường biến đổi lại tạo ra một điện trường xoáy, nghĩa là hình thành quá trình truyền lan sóng điện từ. Trường điện từ thoát khỏi sự ràng buộc của nguồn, tự nó khép kín gọi là trường điện từ tự do, năng lượng của trường điện từ này gọi là năng lượng bức xạ. Phần năng lượng này là năng lượng có ích và được sử dụng cho thông tin vô tuyến. Trường điện từ bị ràng buộc bởi nguồn gọi là trường điện từ ràng buộc. Năng lượng của trường điện từ này gọi là năng lượng vô công. Vậy một thiết bị bức xạ điện từ là thiết bị trong đó điện trường hoặc từ trường biến thiên có khả năng thâm nhập 4.3 CÁC THAM SỐ CƠ BẢN CỦA ANTEN Để đánh giá, lựa chọn hoặc sử dụng tốt một anten phải dựa trên những đặc tính và tham số của nó. Dưới đây là những đặc tính và tham số cơ bản của anten. 4.3.1 Hàm tính hướng Khi sử dụng anten ta cần biết anten đó bức xạ vô hướng hay có hướng, và ở hướng nào anten bức xạ là cực đại, hướng nào anten không bức xạ để có thể đặt đúng vị trí anten. Muốn vậy ta phải biết tính hướng của anten đó. Một trong các thông số đặc tả hướng tính của anten là hàm tính hướng. Hàm tính hướng là hàm số biểu thị sự phụ thuộc của cường độ trường bức xạ của anten theo các hướng khác nhau trong không gian với khoảng cách không đổi, được ký hiệu là f[θ,φ]. Hàm tính hướng được thể hiện ở các dạng sau: Trong trường hợp tổng quát, hàm tính hướng là hàm véc tơ phức, bao gồm các thành phần theo θ và φ [] [ ] [ ],, ,f fifiθ θϕ ϕθ ϕθϕ θϕ=+ [4.1] Hàm tính hướng biên độ là hàm số biểu thị quan hệ tương đối của biên độ cường độ trường bức xạ theo các hướng khảo sát khi cự ly khảo sát không đổi, đó chính là biên độ của hàm tính hướng phức [cụ thể hơn là modun của hàm tính hướng phức]. [] [] []22,,,fffθϕθ ϕθϕθϕ=+ [4.2] Để đơn giản cho việc khảo sát tính hướng của một anten cũng như thiết lập và phân tích đồ thị phương hướng ta thường dùng một hàm biên độ chuẩn hóa, là hàm số biểu thị biên độ cường độ trường ở hướng khảo sát trên biên độ cường độ trường ở hướng cực đại. [][ ][]ax,,,mfFfθ ϕθϕθϕ= [4.3] 66Như vậy giá tri cực đại của hàm biên độ chuẩn hóa sẽ bằng 1. 4.3.2 Đồ thị phương hướng và độ rộng búp sóng Hàm tính hướng cho biết giá trị cụ thể của tính hướng một anten, nhưng muốn cảm nhận được bằng trực thị tính hướng của một anten ta phải sử dụng đồ thị. Đồ thị phương hướng được vẽ bởi hàm tính hướng. Đồ thị phương hướng của anten mô tả quan hệ giữa cường độ trường bức xạ hoặc công suất bức xạ của anten trong các hướng khác nhau với một khoảng cách khảo sát cố định [tính từ anten]. Đồ thị phương hướng được biểu diễn trong không gian ba chiều [có dạng hình khối] nhưng rất khó để hiển thị một cách đầy đủ. Thông thường, đồ thị phương hướng là một mặt cắt của đồ thị hướng tính ba chiều. Đó là đồ thị hướng tính hai chiều trong hệ tọa độ cực hoặc trong hệ tọa độ vuông góc, loại đồ thị có thể hiển thị dễ dàng trên giấy [hình 4.3]. Để đơn giản đồ thị phương hướng thường được vẽ từ hàm tính hướng biên độ chuẩn hóa và được gọi là đồ thị phương hướng chuẩn hóa của anten. Nó cho phép so sánh đồ thị phương hướng của các anten khác nhau. Từ đồ thị phương hướng trên hình 4.3 nhận thấy rằng, giá trị trường bức xạ biến đổi theo sự biến đổi của các góc phương hướng khác nhau. Vì vậy để đánh giá dạng của đồ thị phương hướng của các anten khác nhau ta sử dụng khái niệm độ rộng của đồ thị phương hướng hay còn gọi là độ rộng búp sóng. Độ rộng búp sóng được xác định bởi góc giữa hai hướng mà theo hai hướng đó cường độ trường hoặc công suất bức xạ giảm đi một giá trị nhất định. Có nhiều cách đánh giá độ rộng búp sóng, thường thì độ rộng búp sóng nửa công suất được sử dụng. Độ rộng búp sóng nửa công suất là góc giữa hai hướng mà theo hai hướng đó công suất bức xạ giảm đi một nửa so với công suất bức xạ cực đại. Nếu tính theo giá trị của cường độ điện trường thì độ rộng búp sóng này ứng với góc giữa hai hướng mà theo hai hướng đó cường độ điện trường giảm đi 2 lần so với giá trị cực đại. của anten trong tọa độ cực Nếu tính theo đơn vị decibel [dB], khi công suất giảm đi một nửa sẽ tương ứng với công suất sẽ giảm 3 dB. Bởi vậy độ rộng búp sóng nửa công suất còn được gọi là độ rộng búp sóng 3 dB, ký hiệu là θ3dB [hình 4.5]. Như vậy độ rộng búp sóng thể hiện tính chất tập trung năng lượng bức xạ theo một hướng nào đó, nếu góc θ3dB càng bé thì anten đó tập trung công suất bức xạ càng mạnh. 67 Hình 4.3. Ví dụ đồ thị phương hướng trong hệ tọa độ cực Hình 4.4. Ví dụ đồ thị phương hướng trong hệ tọa độ vuông góc 0180000902/maxP2/maxPmaxP][2321 dBθθ02θ Hình 4.5. Độ rộng của đồ thị phương hướng 4.3.3 Công suất bức xạ, điện trở bức xạ và hiệu suất của anten Công suất đặt vào anten PA do máy phát đưa trực tiếp đến anten hoặc thông thường qua fidơ cung cấp cho anten. Trong quá trình chuyển đổi năng lượng cao tần từ máy phát thành năng lượng bức xạ sóng điện từ không thể tránh các tổn hao do nhiệt bởi vật dẫn, chất điện môi của anten, và phần mất mát do cảm ứng và che chắn bởi các linh kiện phụ như thanh đỡ bộ chiếu xạ, bản thân bộ chiếu xạ… Vì vậy, công suất là bao gồm cả công suất tổn hao Pth và công suất bức xạ Pbx. A bx thP PP=+ [4.4] Một cách hình thức ta có thể coi công suất bức xạ của anten tương tự như công suất tiêu hao trên một điện trở tương đương Rbx nào đó. Khi ấy ta có thể viết [ ]2AbxthPIR R=+ [4.5] -60 -3030 θo0,250,500,75 1,0090-9060 68Đại lượng Rbx được gọi là điện trở bức xạ của anten, nó chỉ mang tính chất tượng trưng và ở một mức độ nào đó có thể dùng để đánh giá khả năng bức xạ của anten. Anten được coi là thiết bị chuyển đổi năng lượng, do đó một thông số quan trọng đặc trưng của nó là hiệu suất làm việc. Hiệu suất của anten, ηA, chính là tỷ số giữa công suất bức xạ, Pbx và công suất máy phát đưa vào anten, [PA] bxAAPPη= [4.6] Hay bx bxAbx th bx thPRP PRRη==++ [4.7] Hiệu suất của anten đặc trưng cho mức độ tổn hao công suất của anten. Thông thường hiệu suất của anten luôn nhỏ hơn 1. 4.3.4 Hệ số hướng tính và hệ số khuếch đại của anten Anten có nhiều loại, kết cấu hình dáng và kích thước của chúng rất đa dạng. Để biểu thị tính hướng của mỗi anten, ngoài các thông số về độ rộng búp sóng người ta đưa vào hệ số hướng tính [còn gọi là hệ số phương hướng] và hệ số khuếch đại [còn gọi là hệ số tăng ích hay độ lợi]. Các hệ số đó cho phép đánh giá tính phương hướng và hiệu quả bức xạ của anten tại một điểm xa nào đó của trường bức xạ trên cơ sở các biểu thức hoặc đồ thị so sánh với anten lý tưởng [hoặc anten chuẩn]. Như vậy việc so sánh các anten với nhau và lựa chọn loại anten thích hợp cho tuyến thông tin cần thiết trở nên dễ dàng. Anten lý tưởng là anten có hiệu suất làm việc 100% và năng lượng bức xạ sóng điện từ đồng đều ở tất cả các hướng. Anten lý tưởng được xem như nguồn bức xạ vô hướng hoặc một chấn tử đối xứng nửa bước sóng. - Hệ số hướng tính Hệ số hướng tính của anten ở hướng đã cho là tỷ số giữa mật độ công suất bức xạ của anten ở hướng đó trên mật độ công suất bức xạ của anten chuẩn ở cùng hướng với khoảng cách không đổi, với điều kiện công suất bức xạ của hai anten là như nhau. [][]0,,SDSθ ϕθϕ= [4.8] Trong đó D[θ,φ] là hệ số hướng tính của anten khảo sát ở hướng [θ,φ] với khoảng cách r. S[θ,φ] và S0 là mật độ công suất bức xạ của anten khảo sát ở hướng [θ,φ], khoảng cách r và mật độ công suất bức xạ của anten vô hướng tại cùng điểm xét. Như đã đề cập ở chương 1, công thức [1.12] và [1.13] ta có thể rút ra công thức [][]220,,EDEθ ϕθϕ= [4.9]

Video liên quan

Chủ Đề