Menu văn bản python

Các đối tượng là sự trừu tượng hóa dữ liệu của Python. Tất cả dữ liệu trong chương trình Python được biểu diễn bằng đối tượng hoặc bằng quan hệ giữa các đối tượng. (Theo một nghĩa nào đó, và phù hợp với mô hình “máy tính chương trình được lưu trữ” của Von Neumann, mã cũng được biểu diễn bằng các đối tượng. )

Mỗi đối tượng có một danh tính, một loại và một giá trị. Danh tính của một đối tượng không bao giờ thay đổi khi nó đã được tạo; . Toán tử '______07' so sánh danh tính của hai đối tượng;

Chi tiết triển khai CPython. Đối với CPython,

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
9 là địa chỉ bộ nhớ lưu trữ
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
0

Loại đối tượng xác định các hoạt động mà đối tượng hỗ trợ (e. g. , "nó có độ dài không?") và cũng xác định các giá trị có thể có cho các đối tượng thuộc loại đó. Hàm

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
1 trả về kiểu của một đối tượng (chính nó là một đối tượng). Giống như danh tính của nó, loại đối tượng cũng không thể thay đổi. 1

Giá trị của một số đối tượng có thể thay đổi. Các đối tượng có giá trị có thể thay đổi được gọi là có thể thay đổi; . (Giá trị của một đối tượng vùng chứa bất biến có chứa tham chiếu đến một đối tượng có thể thay đổi có thể thay đổi khi giá trị của đối tượng sau này bị thay đổi; tuy nhiên, vùng chứa vẫn được coi là không thay đổi, bởi vì tập hợp các đối tượng mà nó chứa không thể thay đổi được. Vì vậy, tính bất biến không hoàn toàn giống với việc có một giá trị không thể thay đổi, nó tinh tế hơn. ) Khả năng thay đổi của một đối tượng được xác định bởi loại của nó;

Các đối tượng không bao giờ bị phá hủy một cách rõ ràng; . Việc triển khai được phép hoãn việc thu thập rác hoặc bỏ qua hoàn toàn — đó là vấn đề về chất lượng triển khai, cách thức triển khai việc thu gom rác, miễn là không có đối tượng nào được thu thập mà vẫn có thể truy cập được

Chi tiết triển khai CPython. CPython hiện đang sử dụng sơ đồ đếm tham chiếu với (tùy chọn) phát hiện chậm rác được liên kết theo chu kỳ, thu thập hầu hết các đối tượng ngay khi chúng không thể truy cập được, nhưng không được đảm bảo để thu thập rác chứa tham chiếu vòng tròn. Xem tài liệu của mô-đun

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
2 để biết thông tin về cách kiểm soát việc thu gom rác tuần hoàn. Các triển khai khác hoạt động khác và CPython có thể thay đổi. Không phụ thuộc vào việc hoàn thiện ngay lập tức các đối tượng khi chúng không thể truy cập được (vì vậy bạn phải luôn đóng tệp một cách rõ ràng)

Lưu ý rằng việc sử dụng các phương tiện theo dõi hoặc gỡ lỗi của triển khai có thể giữ cho các đối tượng tồn tại mà thông thường có thể thu thập được. Cũng lưu ý rằng việc bắt một ngoại lệ bằng câu lệnh '_______33...

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
4' có thể giữ cho các đối tượng tồn tại

Một số đối tượng chứa các tham chiếu đến tài nguyên “bên ngoài” chẳng hạn như tệp hoặc cửa sổ đang mở. Điều này được hiểu rằng các tài nguyên này được giải phóng khi đối tượng được thu gom rác, nhưng vì việc thu gom rác không được đảm bảo xảy ra, nên các đối tượng đó cũng cung cấp một cách rõ ràng để giải phóng tài nguyên bên ngoài, thường là phương thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
5. Các chương trình được khuyến khích mạnh mẽ để đóng các đối tượng như vậy một cách rõ ràng. Câu lệnh '__
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3...______37' và câu lệnh '
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
8' cung cấp các cách thuận tiện để thực hiện việc này

Một số đối tượng chứa tham chiếu đến các đối tượng khác; . Ví dụ về vùng chứa là bộ dữ liệu, danh sách và từ điển. Các tham chiếu là một phần giá trị của vùng chứa. Trong hầu hết các trường hợp, khi chúng ta nói về giá trị của một vùng chứa, chúng ta ngụ ý các giá trị, không phải danh tính của các đối tượng được chứa; . Vì vậy, nếu một bộ chứa bất biến (như bộ dữ liệu) chứa tham chiếu đến một đối tượng có thể thay đổi, thì giá trị của nó sẽ thay đổi nếu đối tượng có thể thay đổi đó bị thay đổi

Các loại ảnh hưởng đến hầu hết các khía cạnh của hành vi đối tượng. Ngay cả tầm quan trọng của danh tính đối tượng cũng bị ảnh hưởng theo một nghĩa nào đó. đối với các loại bất biến, các hoạt động tính toán các giá trị mới thực sự có thể trả về một tham chiếu đến bất kỳ đối tượng hiện có nào có cùng loại và giá trị, trong khi đối với các đối tượng có thể thay đổi thì điều này không được phép. e. g. , sau

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
9,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
31 có thể hoặc không thể tham chiếu đến cùng một đối tượng với giá trị một, tùy thuộc vào cách triển khai, nhưng sau
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
32,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
33 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
34 được đảm bảo tham chiếu đến hai danh sách trống khác nhau, duy nhất, mới được tạo. (Lưu ý rằng
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
35 gán cùng một đối tượng cho cả
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
33 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
34. )

3. 2. Hệ thống phân cấp loại tiêu chuẩn¶

Dưới đây là danh sách các loại được tích hợp sẵn trong Python. Các mô-đun mở rộng (được viết bằng C, Java hoặc các ngôn ngữ khác, tùy thuộc vào việc triển khai) có thể xác định các loại bổ sung. Các phiên bản tương lai của Python có thể thêm các loại vào hệ thống phân cấp loại (e. g. , số hữu tỷ, mảng số nguyên được lưu trữ hiệu quả, v.v. ), mặc dù những phần bổ sung như vậy thường sẽ được cung cấp thông qua thư viện chuẩn để thay thế

Một số mô tả loại bên dưới chứa đoạn liệt kê 'thuộc tính đặc biệt. ' Đây là những thuộc tính cung cấp quyền truy cập vào việc triển khai và không dành cho mục đích sử dụng chung. Định nghĩa của họ có thể thay đổi trong tương lai

Không có

Loại này có một giá trị duy nhất. Có một đối tượng duy nhất với giá trị này. Đối tượng này được truy cập thông qua tên dựng sẵn

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38. Nó được sử dụng để biểu thị sự vắng mặt của một giá trị trong nhiều tình huống, e. g. , nó được trả về từ các hàm không trả về bất cứ thứ gì một cách rõ ràng. Giá trị thật của nó là sai

Không được thực hiện

Loại này có một giá trị duy nhất. Có một đối tượng duy nhất với giá trị này. Đối tượng này được truy cập thông qua tên dựng sẵn

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39. Các phương thức số và các phương thức so sánh phong phú sẽ trả về giá trị này nếu chúng không thực hiện thao tác cho các toán hạng được cung cấp. (Trình thông dịch sau đó sẽ thử thao tác được phản ánh hoặc một số hoạt động dự phòng khác, tùy thuộc vào người vận hành. ) Nó không nên được đánh giá trong ngữ cảnh boolean

Xem Thực hiện các phép toán số học để biết thêm chi tiết.

Đã thay đổi trong phiên bản 3. 9. Đánh giá

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39 trong ngữ cảnh boolean không được dùng nữa. Mặc dù nó hiện được đánh giá là đúng, nhưng nó sẽ phát ra một
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
41. Nó sẽ tăng
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 trong phiên bản tương lai của Python.

dấu chấm lửng

Loại này có một giá trị duy nhất. Có một đối tượng duy nhất với giá trị này. Đối tượng này được truy cập thông qua

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
43 theo nghĩa đen hoặc tên tích hợp sẵn
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
44. Giá trị thật của nó là true

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
45

Chúng được tạo bởi các chữ số và được trả về dưới dạng kết quả bởi các toán tử số học và các hàm tích hợp số học. Các đối tượng số là bất biến; . Tất nhiên, các số trong Python có liên quan chặt chẽ với các số toán học, nhưng chịu các hạn chế của biểu diễn số trong máy tính

Biểu diễn chuỗi của các lớp số, được tính bởi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
46 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
47, có các thuộc tính sau

  • Chúng là các chữ số hợp lệ, khi được chuyển đến hàm tạo của lớp chúng, sẽ tạo ra một đối tượng có giá trị của số ban đầu

  • Biểu diễn ở cơ sở 10, khi có thể

  • Các số 0 ở đầu, có thể ngoại trừ một số 0 trước dấu thập phân, không được hiển thị

  • Các số 0 ở cuối, có thể ngoại trừ một số 0 sau dấu thập phân, không được hiển thị

  • Một dấu hiệu chỉ được hiển thị khi số âm

Python phân biệt giữa số nguyên, số dấu phẩy động và số phức

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
48

Chúng đại diện cho các phần tử từ tập hợp các số nguyên (dương và âm)

Có hai loại số nguyên

Số nguyên (
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
49)

Chúng đại diện cho các số trong một phạm vi không giới hạn, chỉ tùy thuộc vào bộ nhớ (ảo) có sẵn. Với mục đích của các phép toán dịch chuyển và mặt nạ, một biểu diễn nhị phân được giả định và các số âm được biểu diễn dưới dạng một biến thể của phần bù 2, điều này tạo ảo giác về một chuỗi vô hạn các bit dấu kéo dài sang trái

Booleans (
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
30)

Chúng đại diện cho các giá trị thật Sai và Đúng. Hai đối tượng đại diện cho các giá trị

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 là các đối tượng Boolean duy nhất. Kiểu Boolean là một kiểu con của kiểu số nguyên và các giá trị Boolean hoạt động giống như các giá trị 0 và 1 tương ứng trong hầu hết các ngữ cảnh, ngoại trừ khi được chuyển đổi thành một chuỗi, các chuỗi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
33 hoặc
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34 được trả về tương ứng

Các quy tắc biểu diễn số nguyên nhằm đưa ra cách giải thích có ý nghĩa nhất về phép dịch chuyển và mặt nạ liên quan đến số nguyên âm

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 (
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36)

Chúng đại diện cho các số dấu phẩy động chính xác kép ở cấp độ máy. Bạn phụ thuộc vào kiến ​​trúc máy bên dưới (và triển khai C hoặc Java) cho phạm vi được chấp nhận và xử lý tràn. Python không hỗ trợ các số dấu phẩy động có độ chính xác đơn;

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
37 (
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
38)

Chúng biểu thị các số phức dưới dạng một cặp số dấu phẩy động chính xác kép ở cấp độ máy. Các cảnh báo tương tự áp dụng cho các số dấu phẩy động. Phần thực và phần ảo của một số phức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
39 có thể được truy xuất thông qua các thuộc tính chỉ đọc
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
30 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31

trình tự

Chúng đại diện cho các tập hợp có thứ tự hữu hạn được lập chỉ mục bởi các số không âm. Hàm tích hợp

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 trả về số lượng phần tử của một chuỗi. Khi độ dài của một dãy là n, bộ chỉ số chứa các số 0, 1, …, n-1. Mục i của dãy a được chọn bởi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
33

Trình tự cũng hỗ trợ cắt.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34 chọn tất cả các mục có chỉ số k sao cho i
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 k
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36 j. Khi được sử dụng như một biểu thức, một lát cắt là một chuỗi cùng loại. Điều này ngụ ý rằng bộ chỉ mục được đánh số lại để nó bắt đầu từ 0

Một số trình tự cũng hỗ trợ “cắt lát mở rộng” với tham số “bước” thứ ba.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
37 chọn tất cả các mục của a có chỉ số x trong đó
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
38, n
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
39
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
30 và i
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 x
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36 j

Các trình tự được phân biệt theo khả năng biến đổi của chúng

Trình tự bất biến

Một đối tượng thuộc loại chuỗi bất biến không thể thay đổi sau khi được tạo. (Nếu đối tượng chứa các tham chiếu đến các đối tượng khác, các đối tượng khác này có thể thay đổi và có thể thay đổi; tuy nhiên, tập hợp các đối tượng được tham chiếu trực tiếp bởi một đối tượng không thể thay đổi không thể thay đổi. )

Các loại sau đây là trình tự bất biến

Dây

Chuỗi là một chuỗi các giá trị đại diện cho các điểm mã Unicode. Tất cả các điểm mã trong phạm vi

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
33 có thể được biểu diễn trong một chuỗi. Python không có loại char ; . Hàm tích hợp sẵn
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 chuyển đổi một điểm mã từ dạng chuỗi của nó thành một số nguyên trong phạm vi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36; . Có thể sử dụng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
30 để chuyển đổi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31 thành
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 bằng cách sử dụng mã hóa văn bản đã cho và có thể sử dụng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
33 để đạt được điều ngược lại.

bộ dữ liệu

Các mục của một tuple là các đối tượng Python tùy ý. Các bộ gồm hai mục trở lên được tạo bởi các danh sách biểu thức được phân tách bằng dấu phẩy. Một bộ của một mục (một 'singleton') có thể được tạo bằng cách thêm dấu phẩy vào một biểu thức (bản thân một biểu thức không tạo ra một bộ, vì dấu ngoặc đơn phải được sử dụng để nhóm các biểu thức). Một bộ trống có thể được tạo bởi một cặp dấu ngoặc đơn rỗng

byte

Một đối tượng bytes là một mảng bất biến. Các mục là các byte 8 bit, được biểu thị bằng các số nguyên trong phạm vi 0 <= x < 256. Các ký tự byte (như

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34) và hàm tạo
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 tích hợp có thể được sử dụng để tạo các đối tượng byte. Ngoài ra, các đối tượng byte có thể được giải mã thành chuỗi thông qua phương thức
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36

trình tự có thể thay đổi

Trình tự có thể thay đổi có thể được thay đổi sau khi chúng được tạo. Các ký hiệu đăng ký và cắt lát có thể được sử dụng làm mục tiêu của các câu lệnh gán và

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
37 (xóa)

Hiện tại có hai loại trình tự có thể thay đổi nội tại

danh sách

Các mục của danh sách là các đối tượng Python tùy ý. Danh sách được hình thành bằng cách đặt một danh sách các biểu thức được phân tách bằng dấu phẩy trong dấu ngoặc vuông. (Lưu ý rằng không có trường hợp đặc biệt nào cần thiết để tạo danh sách có độ dài 0 hoặc 1. )

Mảng byte

Một đối tượng bytearray là một mảng có thể thay đổi. Chúng được tạo bởi hàm dựng sẵn

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
38. Ngoài việc có thể thay đổi (và do đó không thể băm được), các mảng byte còn cung cấp giao diện và chức năng giống như các đối tượng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 bất biến

Mô-đun mở rộng

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
30 cung cấp một ví dụ bổ sung về loại trình tự có thể thay đổi, cũng như mô-đun
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31

Đặt loại

Chúng đại diện cho các tập hợp hữu hạn, không có thứ tự của các đối tượng duy nhất, bất biến. Như vậy, chúng không thể được lập chỉ mục bởi bất kỳ chỉ số nào. Tuy nhiên, chúng có thể được lặp đi lặp lại và hàm tích hợp sẵn

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 trả về số lượng mục trong một tập hợp. Các cách sử dụng phổ biến cho các tập hợp là kiểm tra tư cách thành viên nhanh, loại bỏ các bản trùng lặp khỏi một chuỗi và tính toán các phép toán như giao, hợp, hiệu và hiệu đối xứng

Đối với các phần tử tập hợp, các quy tắc bất biến tương tự áp dụng cho các khóa từ điển. Lưu ý rằng các loại số tuân theo các quy tắc thông thường để so sánh số. nếu hai số so sánh bằng nhau (e. g. ,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34), chỉ một trong số chúng có thể được chứa trong một bộ

Hiện tại có hai loại tập hợp nội tại

bộ

Chúng đại diện cho một tập hợp có thể thay đổi. Chúng được tạo bởi hàm tạo

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 tích hợp và có thể được sửa đổi sau đó bằng một số phương thức, chẳng hạn như
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36

bộ đông lạnh

Chúng đại diện cho một tập hợp bất biến. Chúng được tạo bởi hàm dựng sẵn

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
37. Vì một bộ đóng băng là bất biến và có thể băm nên nó có thể được sử dụng lại như một phần tử của một bộ khác hoặc làm khóa từ điển.

ánh xạ

Chúng đại diện cho các bộ đối tượng hữu hạn được lập chỉ mục bởi các bộ chỉ mục tùy ý. Ký hiệu chỉ số dưới

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
38 chọn mục được lập chỉ mục bởi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
39 từ ánh xạ
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30; . Hàm tích hợp sẵn
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 trả về số lượng mục trong ánh xạ

Hiện tại có một loại ánh xạ nội tại duy nhất

từ điển

Chúng đại diện cho các bộ đối tượng hữu hạn được lập chỉ mục bởi các giá trị gần như tùy ý. Các loại giá trị duy nhất không được chấp nhận làm khóa là các giá trị chứa danh sách hoặc từ điển hoặc các loại có thể thay đổi khác được so sánh theo giá trị thay vì theo danh tính đối tượng, lý do là việc triển khai từ điển hiệu quả yêu cầu giá trị băm của khóa không đổi. Các loại số được sử dụng cho các phím tuân theo các quy tắc thông thường để so sánh số. nếu hai số so sánh bằng nhau (e. g. ,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34) thì chúng có thể được sử dụng thay thế cho nhau để lập chỉ mục cho cùng một mục từ điển

Từ điển duy trì thứ tự chèn, nghĩa là các khóa sẽ được tạo theo cùng thứ tự mà chúng được thêm tuần tự vào từ điển. Thay thế một khóa hiện có không thay đổi thứ tự, tuy nhiên việc xóa một khóa và cắm lại sẽ thêm khóa đó vào cuối thay vì giữ nguyên vị trí cũ

Từ điển có thể thay đổi; . Dictionary displays).

Các mô-đun mở rộng

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
06 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
07 cung cấp các ví dụ bổ sung về các loại ánh xạ, cũng như mô-đun
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31

Đã thay đổi trong phiên bản 3. 7. Từ điển không giữ nguyên thứ tự chèn trong các phiên bản Python trước 3. 6. Trong CPython 3. 6, thứ tự chèn được giữ nguyên, nhưng nó được coi là chi tiết triển khai tại thời điểm đó hơn là đảm bảo ngôn ngữ.

các loại có thể gọi

Đây là những loại có thể áp dụng thao tác gọi hàm (xem phần Lệnh gọi ).

Hàm do người dùng định nghĩa

Một đối tượng hàm do người dùng xác định được tạo bởi định nghĩa hàm (xem phần Định nghĩa hàm ). Nó nên được gọi với một danh sách đối số chứa cùng số mục như danh sách tham số chính thức của hàm.

thuộc tính đặc biệt

Thuộc tính

Nghĩa

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
09

Chuỗi tài liệu của hàm hoặc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không có;

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
11

Tên chức năng

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
12

Tên đủ điều kiện qualified name của hàm. . . . . . . . . . . .

Mới trong phiên bản 3. 3

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
13

Tên của mô-đun mà chức năng đã được xác định trong hoặc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không có

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
15

Một bộ chứa các giá trị đối số mặc định cho những đối số có giá trị mặc định hoặc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không có đối số nào có giá trị mặc định

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
17

Đối tượng mã đại diện cho thân hàm đã biên dịch

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
18

Tham chiếu đến từ điển chứa các biến toàn cục của hàm — không gian tên toàn cục của mô-đun trong đó hàm được xác định

Chỉ đọc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19

Không gian tên hỗ trợ các thuộc tính chức năng tùy ý

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
20

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 hoặc một bộ ô chứa các liên kết cho các biến tự do của hàm. Xem bên dưới để biết thông tin về thuộc tính
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
22

Chỉ đọc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
23

Một lệnh chứa chú thích của các tham số. Các khóa của dict là tên tham số và

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
24 cho chú thích trả về, nếu được cung cấp. Để biết thêm thông tin về cách làm việc với thuộc tính này, hãy xem Các phương pháp hay nhất về chú thích .

Có thể ghi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
25

Một lệnh chứa các giá trị mặc định cho các tham số chỉ từ khóa

Có thể ghi

Hầu hết các thuộc tính có nhãn “Writable” kiểm tra loại giá trị được gán

Các đối tượng hàm cũng hỗ trợ nhận và đặt các thuộc tính tùy ý, chẳng hạn như có thể được sử dụng để đính kèm siêu dữ liệu vào các hàm. Ký hiệu dấu chấm thuộc tính thông thường được sử dụng để lấy và đặt các thuộc tính đó. Lưu ý rằng việc triển khai hiện tại chỉ hỗ trợ các thuộc tính chức năng trên các chức năng do người dùng xác định. Các thuộc tính chức năng trên các chức năng tích hợp có thể được hỗ trợ trong tương lai

Một đối tượng ô có thuộc tính

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
22. Điều này có thể được sử dụng để lấy giá trị của ô, cũng như đặt giá trị

Thông tin bổ sung về định nghĩa của hàm có thể được truy xuất từ ​​đối tượng mã của nó; . Loại

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
27 có thể được truy cập trong mô-đun
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
28

Phương thức sơ thẩm

Một đối tượng phương thức thể hiện kết hợp một lớp, một thể hiện của lớp và bất kỳ đối tượng nào có thể gọi được (thông thường là một hàm do người dùng định nghĩa)

Thuộc tính chỉ đọc đặc biệt.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 là đối tượng thể hiện của lớp,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30 là đối tượng hàm;

Các phương thức cũng hỗ trợ truy cập (nhưng không cài đặt) các thuộc tính hàm tùy ý trên đối tượng hàm bên dưới

Các đối tượng phương thức do người dùng định nghĩa có thể được tạo khi nhận một thuộc tính của một lớp (có thể thông qua một thể hiện của lớp đó), nếu thuộc tính đó là một đối tượng hàm do người dùng định nghĩa hoặc một đối tượng phương thức của lớp

Khi một đối tượng phương thức thể hiện được tạo bằng cách truy xuất một đối tượng hàm do người dùng định nghĩa từ một lớp thông qua một trong các thể hiện của nó, thì thuộc tính

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 của nó là thể hiện và đối tượng phương thức được cho là bị ràng buộc. Thuộc tính
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30 của phương thức mới là đối tượng hàm ban đầu

Khi một đối tượng phương thức thể hiện được tạo bằng cách truy xuất một đối tượng phương thức lớp từ một lớp hoặc thể hiện, thuộc tính

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 của nó là chính lớp đó và thuộc tính
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30 của nó là đối tượng hàm bên dưới phương thức lớp

Khi một đối tượng phương thức thể hiện được gọi, hàm bên dưới (

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30) được gọi, chèn thể hiện của lớp (
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29) trước danh sách đối số. Chẳng hạn, khi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
43 là một lớp chứa định nghĩa cho hàm
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
44 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
0 là một thể hiện của
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
43, việc gọi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
47 tương đương với việc gọi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
48

Khi một đối tượng phương thức thể hiện được dẫn xuất từ ​​một đối tượng phương thức lớp, thì “thể hiện lớp” được lưu trữ trong

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 sẽ thực sự là chính lớp đó, do đó, việc gọi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
47 hoặc
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
51 tương đương với việc gọi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
52 trong đó
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
53 là hàm cơ bản

Lưu ý rằng việc chuyển đổi từ đối tượng hàm sang đối tượng phương thức thể hiện xảy ra mỗi khi thuộc tính được truy xuất từ ​​thể hiện. Trong một số trường hợp, cách tối ưu hiệu quả là gán thuộc tính cho một biến cục bộ và gọi biến cục bộ đó. Cũng lưu ý rằng việc chuyển đổi này chỉ xảy ra đối với các chức năng do người dùng xác định; . Cũng cần lưu ý rằng các hàm do người dùng định nghĩa là các thuộc tính của một thể hiện lớp không được chuyển đổi thành các phương thức ràng buộc;

chức năng máy phát điện

Hàm hoặc phương thức sử dụng câu lệnh

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
54 (xem phần Câu lệnh năng suất ) được gọi là hàm tạo. Một hàm như vậy, khi được gọi, luôn trả về một đối tượng iterator có thể được sử dụng để thực thi phần thân của hàm. gọi phương thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
55 của iterator sẽ khiến hàm thực thi cho đến khi nó cung cấp một giá trị bằng cách sử dụng câu lệnh
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
54. Khi hàm thực thi một câu lệnh
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
57 hoặc rơi ra khỏi phần cuối, một ngoại lệ
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
58 sẽ được đưa ra và trình vòng lặp sẽ đi đến phần cuối của tập hợp các giá trị được trả về.

chức năng quy trình

Một hàm hoặc phương thức được định nghĩa bằng cách sử dụng

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
59 được gọi là hàm coroutine. Một hàm như vậy, khi được gọi, sẽ trả về một đối tượng coroutine . Nó có thể chứa các biểu thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
60, cũng như các câu lệnh
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
61 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
62. Xem thêm phần Đối tượng Coroutine .

Chức năng máy phát điện không đồng bộ

Một hàm hoặc phương thức được xác định bằng cách sử dụng

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
59 và sử dụng câu lệnh
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
54 được gọi là hàm tạo không đồng bộ. Một hàm như vậy, khi được gọi, trả về một đối tượng trình lặp không đồng bộ có thể được sử dụng trong câu lệnh
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
62 để thực thi phần thân của hàm.

Gọi phương thức

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
66 của trình lặp không đồng bộ sẽ trả về một awaitable mà khi được đợi sẽ thực thi cho đến khi nó cung cấp một giá trị bằng cách sử dụng biểu thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
54. Khi hàm thực thi một câu lệnh
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
57 trống hoặc rơi ra khỏi phần cuối, một ngoại lệ
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
69 được đưa ra và bộ lặp không đồng bộ sẽ đạt đến phần cuối của tập hợp các giá trị được tạo ra.

Chức năng tích hợp sẵn

Một đối tượng chức năng tích hợp là một trình bao bọc xung quanh một chức năng C. Ví dụ về các chức năng tích hợp sẵn là

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
71 (
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
72 là một mô-đun tích hợp tiêu chuẩn). Số lượng và loại đối số được xác định bởi hàm C. Thuộc tính chỉ đọc đặc biệt.
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
09 là chuỗi tài liệu của hàm, hoặc
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không có;

Các phương thức tích hợp

Đây thực sự là một cách ngụy trang khác của một hàm dựng sẵn, lần này chứa một đối tượng được truyền cho hàm C dưới dạng một đối số phụ ngầm định. Một ví dụ về phương thức dựng sẵn là

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
80, giả sử alist là một đối tượng danh sách. Trong trường hợp này, thuộc tính chỉ đọc đặc biệt
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 được đặt thành đối tượng được biểu thị bằng alist

Các lớp học

Các lớp có thể gọi được. Các đối tượng này thường đóng vai trò là nhà máy cho các phiên bản mới của chính chúng, nhưng các biến thể có thể xảy ra đối với các loại lớp ghi đè lên

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82. Các đối số của cuộc gọi được chuyển đến
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 và, trong trường hợp điển hình, đến
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 để khởi tạo phiên bản mới

Trường hợp lớp

Có thể gọi các thể hiện của các lớp tùy ý bằng cách định nghĩa một phương thức

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
85 trong lớp của chúng

mô-đun

Mô-đun là một đơn vị tổ chức cơ bản của mã Python và được tạo bởi hệ thống nhập như được gọi bởi câu lệnh

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
86 hoặc bởi . Một đối tượng mô-đun có một không gian tên được triển khai bởi một đối tượng từ điển (đây là từ điển được tham chiếu bởi thuộc tính
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
18 của các hàm được xác định trong mô-đun). Tham chiếu thuộc tính được dịch sang tra cứu trong từ điển này, e. g. ,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
90 tương đương với
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
91. Đối tượng mô-đun không chứa đối tượng mã được sử dụng để khởi tạo mô-đun (vì nó không cần thiết sau khi quá trình khởi tạo hoàn tất).

Gán thuộc tính cập nhật từ điển không gian tên của mô-đun, e. g. ,

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
92 tương đương với
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
93

Thuộc tính được xác định trước (có thể ghi)

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
11

Tên của mô-đun

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
09

Chuỗi tài liệu của mô-đun hoặc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không có

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
97

Tên đường dẫn của tệp mà mô-đun được tải từ đó, nếu nó được tải từ một tệp. Thuộc tính

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
97 có thể bị thiếu đối với một số loại mô-đun, chẳng hạn như mô-đun C được liên kết tĩnh vào trình thông dịch. Đối với các mô-đun mở rộng được tải động từ thư viện dùng chung, đó là tên đường dẫn của tệp thư viện dùng chung

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
23

Từ điển chứa chú thích biến được thu thập trong quá trình thực thi phần thân mô-đun. Để biết các phương pháp hay nhất khi làm việc với

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
23, vui lòng xem Các phương pháp hay nhất về chú thích .

Thuộc tính chỉ đọc đặc biệt.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 là không gian tên của mô-đun dưới dạng đối tượng từ điển

Chi tiết triển khai CPython. Do cách CPython xóa từ điển mô-đun, từ điển mô-đun sẽ bị xóa khi mô-đun nằm ngoài phạm vi ngay cả khi từ điển vẫn có tham chiếu trực tiếp. Để tránh điều này, hãy sao chép từ điển hoặc giữ nguyên mô-đun trong khi sử dụng trực tiếp từ điển của nó

lớp tùy chỉnh

Các loại lớp tùy chỉnh thường được tạo bởi định nghĩa lớp (xem phần Định nghĩa lớp ). Một lớp có một không gian tên được triển khai bởi một đối tượng từ điển. Tham chiếu thuộc tính lớp được dịch sang tra cứu trong từ điển này, e. g. ,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
02 được dịch thành
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
03 (mặc dù có một số hook cho phép các phương tiện định vị thuộc tính khác). Khi không tìm thấy tên thuộc tính ở đó, việc tìm kiếm thuộc tính tiếp tục trong các lớp cơ sở. Tìm kiếm các lớp cơ sở này sử dụng thứ tự phân giải phương thức C3 hoạt động chính xác ngay cả khi có cấu trúc thừa kế 'kim cương' nơi có nhiều đường dẫn thừa kế dẫn trở lại tổ tiên chung. Chi tiết bổ sung về C3 MRO được sử dụng bởi Python có thể được tìm thấy trong tài liệu đi kèm với 2. 3 phát hành tại https. //www. con trăn. org/tải xuống/phát hành/2. 3/mro/.

Khi một tham chiếu thuộc tính lớp (đối với lớp

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
43 chẳng hạn) sẽ tạo ra một đối tượng phương thức lớp, thì nó được chuyển đổi thành một đối tượng phương thức thể hiện có thuộc tính
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 là
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
43. Khi nó tạo ra một đối tượng phương thức tĩnh, nó được chuyển đổi thành đối tượng được bao bọc bởi đối tượng phương thức tĩnh. Xem phần Triển khai Bộ mô tả để biết một cách khác mà các thuộc tính được truy xuất từ ​​một lớp có thể khác với các thuộc tính thực sự có trong lớp
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 của nó.

Các phép gán thuộc tính lớp cập nhật từ điển của lớp, không bao giờ là từ điển của lớp cơ sở

Một đối tượng lớp có thể được gọi (xem ở trên) để tạo ra một thể hiện của lớp (xem bên dưới)

thuộc tính đặc biệt

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
11

tên lớp

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
13

Tên của mô-đun trong đó lớp được định nghĩa

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19

Từ điển chứa không gian tên của lớp

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
11

Một bộ chứa các lớp cơ sở, theo thứ tự xuất hiện của chúng trong danh sách lớp cơ sở

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
09

Chuỗi tài liệu của lớp, hoặc

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không xác định

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
23

Từ điển chứa chú thích biến được thu thập trong quá trình thực thi nội dung lớp. Để biết các phương pháp hay nhất khi làm việc với

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
23, vui lòng xem Các phương pháp hay nhất về chú thích .

thể hiện lớp

Một thể hiện của lớp được tạo bằng cách gọi một đối tượng của lớp (xem bên trên). Một thể hiện của lớp có một không gian tên được triển khai dưới dạng từ điển, đây là nơi đầu tiên mà các tham chiếu thuộc tính được tìm kiếm. Khi một thuộc tính không được tìm thấy ở đó và lớp của đối tượng có một thuộc tính theo tên đó, quá trình tìm kiếm sẽ tiếp tục với các thuộc tính của lớp. Nếu một thuộc tính lớp được tìm thấy là một đối tượng hàm do người dùng định nghĩa, nó sẽ được chuyển thành một đối tượng phương thức thể hiện có thuộc tính

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
29 là thể hiện. Các đối tượng phương thức tĩnh và phương thức lớp cũng được chuyển đổi; . Xem phần Triển khai Bộ mô tả để biết một cách khác mà các thuộc tính của một lớp được truy xuất thông qua các thể hiện của nó có thể khác với các đối tượng thực sự được lưu trữ trong
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 của lớp đó. Nếu không tìm thấy thuộc tính lớp nào và lớp của đối tượng có phương thức
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
18, thì phương thức đó được gọi để đáp ứng tra cứu.

Việc gán và xóa thuộc tính cập nhật từ điển của cá thể, không bao giờ là từ điển của lớp. Nếu lớp có phương thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
19 hoặc
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
20, thì phương thức này được gọi thay vì cập nhật trực tiếp từ điển cá thể

Các thể hiện của lớp có thể giả vờ là các số, trình tự hoặc ánh xạ nếu chúng có các phương thức với các tên đặc biệt nhất định. Xem phần Tên phương thức đặc biệt .

Special attributes.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 là từ điển thuộc tính;

Đối tượng I/O (còn được gọi là đối tượng tệp)

A đối tượng tệp đại diện cho một tệp đang mở. Various shortcuts are available to create file objects. the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
23 built-in function, and also
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
24,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
25, and the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
26 method of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
27,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
28 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
29 are initialized to file objects corresponding to the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface defined by the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
30 abstract class

Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future versions of the interpreter, but they are mentioned here for completeness

Code objects

Code objects represent byte-compiled executable Python code, or bytecode . The difference between a code object and a function object is that the function object contains an explicit reference to the function’s globals (the module in which it was defined), while a code object contains no context; also the default argument values are stored in the function object, not in the code object (because they represent values calculated at run-time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly) to mutable objects.

Special read-only attributes.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31 gives the function name;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 gives the fully qualified function name;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
33 is the total number of positional arguments (including positional-only arguments and arguments with default values);
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
34 is the number of positional-only arguments (including arguments with default values);
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
35 is the number of keyword-only arguments (including arguments with default values);
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
36 is the number of local variables used by the function (including arguments);
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
37 is a tuple containing the names of the local variables (starting with the argument names);
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
38 is a tuple containing the names of local variables that are referenced by nested functions;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
39 is a tuple containing the names of free variables;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
40 is a string representing the sequence of bytecode instructions;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
41 is a tuple containing the literals used by the bytecode;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
42 is a tuple containing the names used by the bytecode;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
43 is the filename from which the code was compiled;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
44 is the first line number of the function;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
45 is a string encoding the mapping from bytecode offsets to line numbers (for details see the source code of the interpreter);
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
46 is the required stack size;
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
47 is an integer encoding a number of flags for the interpreter

The following flag bits are defined for

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
47. bit
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
49 is set if the function uses the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
50 syntax to accept an arbitrary number of positional arguments; bit
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
51 is set if the function uses the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
52 syntax to accept arbitrary keyword arguments; bit
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
53 is set if the function is a generator

Future feature declarations (

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
54) also use bits in
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
47 to indicate whether a code object was compiled with a particular feature enabled. bit
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
56 is set if the function was compiled with future division enabled; bits
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
57 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
58 were used in earlier versions of Python

Other bits in

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
47 are reserved for internal use

If a code object represents a function, the first item in

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
41 is the documentation string of the function, or
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 if undefined

codeobject. co_positions()

Returns an iterable over the source code positions of each bytecode instruction in the code object

The iterator returns tuples containing the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
62. The i-th tuple corresponds to the position of the source code that compiled to the i-th instruction. Column information is 0-indexed utf-8 byte offsets on the given source line

This positional information can be missing. A non-exhaustive lists of cases where this may happen

  • Running the interpreter with

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    63
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    64

  • Loading a pyc file compiled while using

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    63
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    64

  • Position tuples corresponding to artificial instructions

  • Số dòng và số cột không thể được biểu diễn do giới hạn triển khai cụ thể

Khi điều này xảy ra, một số hoặc tất cả các phần tử của bộ dữ liệu có thể là

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38

Mới trong phiên bản 3. 11

Ghi chú

Tính năng này yêu cầu lưu trữ các vị trí cột trong các đối tượng mã, điều này có thể dẫn đến việc tăng nhẹ mức sử dụng đĩa của các tệp Python đã biên dịch hoặc mức sử dụng bộ nhớ trình thông dịch. Để tránh lưu trữ thông tin bổ sung và/hoặc hủy kích hoạt in thông tin truy nguyên bổ sung, có thể sử dụng cờ dòng lệnh

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
63
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
64 hoặc biến môi trường
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
70

Đối tượng khung

Các đối tượng khung đại diện cho các khung thực thi. Chúng có thể xuất hiện trong các đối tượng theo dõi (xem bên dưới) và cũng được chuyển đến các hàm theo dõi đã đăng ký

Thuộc tính chỉ đọc đặc biệt.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
71 là khung ngăn xếp trước đó (về phía người gọi) hoặc
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu đây là khung ngăn xếp dưới cùng;

Truy cập vào

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
73 làm phát sinh sự kiện kiểm tra
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
79 với các đối số
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
80 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
81.

Thuộc tính có thể ghi đặc biệt.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
82, nếu không phải là
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38, là một hàm được gọi cho các sự kiện khác nhau trong quá trình thực thi mã (hàm này được trình gỡ lỗi sử dụng). Thông thường, một sự kiện được kích hoạt cho mỗi dòng nguồn mới - điều này có thể bị vô hiệu hóa bằng cách đặt
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
84 thành
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31

Việc triển khai có thể cho phép yêu cầu các sự kiện trên mỗi opcode bằng cách đặt

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
86 thành
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32. Lưu ý rằng điều này có thể dẫn đến hành vi trình thông dịch không xác định nếu các ngoại lệ do hàm theo dõi đưa ra thoát đến hàm đang được theo dõi

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
88 là số dòng hiện tại của khung — ghi vào dòng này từ bên trong hàm theo dõi nhảy đến dòng đã cho (chỉ dành cho khung dưới cùng). Trình gỡ lỗi có thể triển khai lệnh Nhảy (còn gọi là Đặt câu lệnh tiếp theo) bằng cách ghi vào f_lineno

Các đối tượng khung hỗ trợ một phương thức

khung hình. xóa()

Phương pháp này xóa tất cả các tham chiếu đến các biến cục bộ được giữ bởi khung. Ngoài ra, nếu khung thuộc về trình tạo, trình tạo được hoàn thiện. Điều này giúp phá vỡ các chu kỳ tham chiếu liên quan đến các đối tượng khung (ví dụ: khi bắt một ngoại lệ và lưu trữ dấu vết của nó để sử dụng sau này)

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
89 được nâng lên nếu khung hiện đang được thực thi

Mới trong phiên bản 3. 4

đối tượng truy nguyên

Các đối tượng truy nguyên đại diện cho một dấu vết ngăn xếp của một ngoại lệ. Một đối tượng truy nguyên được tạo hoàn toàn khi xảy ra ngoại lệ và cũng có thể được tạo rõ ràng bằng cách gọi

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
90

Đối với các truy nguyên được tạo hoàn toàn, khi tìm kiếm một trình xử lý ngoại lệ sẽ giải phóng ngăn xếp thực thi, tại mỗi cấp độ chưa được kết nối, một đối tượng truy ngược được chèn vào trước truy nguyên hiện tại. Khi một trình xử lý ngoại lệ được nhập, dấu vết ngăn xếp sẽ được cung cấp cho chương trình. (Xem phần Câu lệnh thử . ) Nó có thể truy cập dưới dạng mục thứ ba của bộ được trả về bởi

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
91 và là thuộc tính
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
92 của ngoại lệ bị bắt.

Khi chương trình không chứa trình xử lý phù hợp, dấu vết ngăn xếp được ghi (được định dạng độc đáo) vào luồng lỗi tiêu chuẩn;

Đối với các dấu vết được tạo rõ ràng, người tạo dấu vết phải xác định cách liên kết các thuộc tính

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
94 để tạo thành một dấu vết ngăn xếp đầy đủ

Thuộc tính chỉ đọc đặc biệt.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
95 điểm đến khung thực thi của cấp độ hiện tại; . Số dòng và lệnh cuối cùng trong truy nguyên có thể khác với số dòng của đối tượng khung của nó nếu ngoại lệ xảy ra trong câu lệnh
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3 không có mệnh đề ngoại trừ phù hợp hoặc với mệnh đề cuối cùng

Truy cập vào

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
95 làm phát sinh sự kiện kiểm tra
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
79 với các đối số
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
80 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
302.

Thuộc tính có thể ghi đặc biệt.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
94 là cấp độ tiếp theo trong theo dõi ngăn xếp (đối với khung nơi xảy ra ngoại lệ) hoặc
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu không có cấp độ tiếp theo

Đã thay đổi trong phiên bản 3. 7. Các đối tượng truy nguyên giờ đây có thể được khởi tạo rõ ràng từ mã Python và thuộc tính

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
94 của các phiên bản hiện có có thể được cập nhật.

Cắt đối tượng

Các đối tượng lát cắt được sử dụng để biểu diễn các lát cắt cho các phương thức

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306. Chúng cũng được tạo bởi hàm
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
307 tích hợp

Thuộc tính chỉ đọc đặc biệt.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
308 là giới hạn dưới; . Các thuộc tính này có thể có bất kỳ kiểu nào

Các đối tượng lát hỗ trợ một phương thức

lát. chỉ số(bản thân , độ dài)

Phương thức này lấy một đối số số nguyên có độ dài duy nhất và tính toán thông tin về lát cắt mà đối tượng lát cắt sẽ mô tả nếu được áp dụng cho một chuỗi các mục có độ dài. Nó trả về một bộ ba số nguyên; . Các chỉ số bị thiếu hoặc nằm ngoài giới hạn được xử lý theo cách nhất quán với các lát cắt thông thường

Đối tượng phương thức tĩnh

Các đối tượng phương thức tĩnh cung cấp một cách đánh bại việc chuyển đổi các đối tượng chức năng thành các đối tượng phương thức được mô tả ở trên. Đối tượng phương thức tĩnh là một trình bao bọc xung quanh bất kỳ đối tượng nào khác, thường là đối tượng phương thức do người dùng định nghĩa. When a static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object, which is not subject to any further transformation. Các đối tượng phương thức tĩnh cũng có thể gọi được. Các đối tượng phương thức tĩnh được tạo bởi hàm tạo

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
312 tích hợp

Class method objects

Một đối tượng phương thức lớp, giống như một đối tượng phương thức tĩnh, là một trình bao bọc xung quanh một đối tượng khác làm thay đổi cách truy xuất đối tượng đó từ các lớp và các thể hiện của lớp. Hành vi của các đối tượng phương thức lớp khi truy xuất như vậy được mô tả ở trên, trong phần "Phương thức do người dùng định nghĩa". Các đối tượng phương thức lớp được tạo bởi hàm tạo

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
313 tích hợp

3. 3. Special method names¶

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscripting and slicing) by defining methods with special names. Đây là cách tiếp cận của Python để nạp chồng toán tử, cho phép các lớp xác định hành vi của chính chúng đối với các toán tử ngôn ngữ. For instance, if a class defines a method named

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306, and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
0 is an instance of this class, then
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
316 is roughly equivalent to
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
317. Trừ khi được đề cập, các nỗ lực thực thi một thao tác sẽ tạo ra một ngoại lệ khi không có phương thức thích hợp nào được xác định (thường là
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318 hoặc
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42)

Đặt một phương pháp đặc biệt thành

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 cho biết rằng thao tác tương ứng không khả dụng. For example, if a class sets
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
321 to
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38, the class is not iterable, so calling
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
323 on its instances will raise a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 (without falling back to
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306). 2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
326 interface in the W3C’s Document Object Model. )

3. 3. 1. Basic customization¶

object. __new__(cls[ , . ])

Called to create a new instance of class cls.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 is a static method (special-cased so you need not declare it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are those passed to the object constructor expression (the call to the class). The return value of
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 should be the new object instance (usually an instance of cls)

Typical implementations create a new instance of the class by invoking the superclass’s

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 method using
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
330 with appropriate arguments and then modifying the newly created instance as necessary before returning it

If

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 is invoked during object construction and it returns an instance of cls, then the new instance’s
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 method will be invoked like
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
333, where self is the new instance and the remaining arguments are the same as were passed to the object constructor

If

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 does not return an instance of cls, then the new instance’s
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 method will not be invoked

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation

object. __init__(self[ , . ])

Called after the instance has been created (by

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82), but before it is returned to the caller. The arguments are those passed to the class constructor expression. If a base class has an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 method, the derived class’s
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 method, if any, must explicitly call it to ensure proper initialization of the base class part of the instance; for example.
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
340

Because

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 work together in constructing objects (
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
82 to create it, and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84 to customize it), no non-
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 value may be returned by
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
84; doing so will cause a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 to be raised at runtime

object. __del__(self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a base class has a

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
348 method, the derived class’s
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
348 method, if any, must explicitly call it to ensure proper deletion of the base class part of the instance

It is possible (though not recommended. ) for the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
348 method to postpone destruction of the instance by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
348 is called a second time when a resurrected object is about to be destroyed; the current CPython implementation only calls it once.

It is not guaranteed that

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
348 methods are called for objects that still exist when the interpreter exits

Ghi chú

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
353 doesn’t directly call
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
354 — the former decrements the reference count for
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
0 by one, and the latter is only called when
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
0’s reference count reaches zero

CPython implementation detail. It is possible for a reference cycle to prevent the reference count of an object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector . A common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then reference the exception, which references its own traceback, which references the locals of all frames caught in the traceback.

See also

Documentation for the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
2 module

Warning

Due to the precarious circumstances under which

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
348 methods are invoked, exceptions that occur during their execution are ignored, and a warning is printed to
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
29 instead. In particular

  • import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    348 can be invoked when arbitrary code is being executed, including from any arbitrary thread. If
    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    348 needs to take a lock or invoke any other blocking resource, it may deadlock as the resource may already be taken by the code that gets interrupted to execute
    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    348

  • import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    348 can be executed during interpreter shutdown. As a consequence, the global variables it needs to access (including other modules) may already have been deleted or set to
    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    38. Python guarantees that globals whose name begins with a single underscore are deleted from their module before other globals are deleted; if no other references to such globals exist, this may help in assuring that imported modules are still available at the time when the
    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    348 method is called

object. __repr__(bản thân)

Called by the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
366 built-in function to compute the “official” string representation of an object. If at all possible, this should look like a valid Python expression that could be used to recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the form
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
367 should be returned. The return value must be a string object. If a class defines
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
46 but not
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
47, then
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
46 is also used when an “informal” string representation of instances of that class is required

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous

object. __str__(self)

Called by

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
371 and the built-in functions
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
372 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
373 to compute the “informal” or nicely printable string representation of an object. The return value must be a string object.

This method differs from

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
374 in that there is no expectation that
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
47 return a valid Python expression. a more convenient or concise representation can be used

The default implementation defined by the built-in type

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
376 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
374

object. __bytes__(self)

Called by bytes to compute a byte-string representation of an object. This should return a

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 object.

object. __format__(self , format_spec)

Called by the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
372 built-in function, and by extension, evaluation of formatted string literals and the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
380 method, to produce a “formatted” string representation of an object. The format_spec argument is a string that contains a description of the formatting options desired. The interpretation of the format_spec argument is up to the type implementing
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
381, however most classes will either delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See Format Specification Mini-Language for a description of the standard formatting syntax.

The return value must be a string object

Changed in version 3. 4. The __format__ method of

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
376 itself raises a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 if passed any non-empty string.

Changed in version 3. 7.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
384 is now equivalent to
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
385 rather than
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
386.

object. __lt__(self , other)object. __le__(self , other)object. __eq__(self , other)object. __ne__(self , other)object. __gt__(self , other)object. __ge__(self , other)

These are the so-called “rich comparison” methods. The correspondence between operator symbols and method names is as follows.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
387 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
388,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
389 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
390,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
391 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
392,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
393 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
394,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
395 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
396, and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
397 calls
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
398

A rich comparison method may return the singleton

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39 if it does not implement the operation for a given pair of arguments. By convention,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32 are returned for a successful comparison. However, these methods can return any value, so if the comparison operator is used in a Boolean context (e. g. , in the condition of an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
402 statement), Python will call
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
403 on the value to determine if the result is true or false

By default,

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
376 implements
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 by using
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
7, returning
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39 in the case of a false comparison.
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
408. For
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
409, by default it delegates to
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 and inverts the result unless it is
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39. There are no other implied relationships among the comparison operators or default implementations; for example, the truth of
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
412 does not imply
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
389. To automatically generate ordering operations from a single root operation, see
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
414

See the paragraph on

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 for some important notes on creating hashable objects which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the operation but the right argument does); rather,

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
416 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
417 are each other’s reflection,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
418 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
419 are each other’s reflection, and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
409 are their own reflection. If the operands are of different types, and right operand’s type is a direct or indirect subclass of the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual subclassing is not considered

object. __hash__(self)

Called by built-in function

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
422 and for operations on members of hashed collections including
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
423,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
424, and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
425. The
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 method should return an integer. The only required property is that objects which compare equal have the same hash value; it is advised to mix together the hash values of the components of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple. Example

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
10

Ghi chú

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
422 truncates the value returned from an object’s custom
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 method to the size of a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
429. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way to do this is with
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
431

If a class does not define an

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 method it should not define a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 operation either; if it defines
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 but not
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415, its instances will not be usable as items in hashable collections. If a class defines mutable objects and implements an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 method, it should not implement
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415, since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value changes, it will be in the wrong hash bucket)

User-defined classes have

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 methods by default; with them, all objects compare unequal (except with themselves) and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
440 returns an appropriate value such that
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
441 implies both that
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
442 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
443

A class that overrides

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 and does not define
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 will have its
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 implicitly set to
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38. When the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 method of a class is
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38, instances of the class will raise an appropriate
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 when a program attempts to retrieve their hash value, and will also be correctly identified as unhashable when checking
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
451

If a class that overrides

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 needs to retain the implementation of
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 from a parent class, the interpreter must be told this explicitly by setting
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
454

If a class that does not override

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
405 wishes to suppress hash support, it should include
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
456 in the class definition. A class which defines its own
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 that explicitly raises a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 would be incorrectly identified as hashable by an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
451 call

Ghi chú

By default, the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 values of str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within an individual Python process, they are not predictable between repeated invocations of Python

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that exploit the worst case performance of a dict insertion, O(n2) complexity. See http. //www. ocert. org/advisories/ocert-2011-003. html for details

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and it typically varies between 32-bit and 64-bit builds)

See also

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
461

Changed in version 3. 3. Hash randomization is enabled by default.

object. __bool__(self)

Called to implement truth value testing and the built-in operation

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
403; should return
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
31 or
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32. When this method is not defined,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
465 is called, if it is defined, and the object is considered true if its result is nonzero. If a class defines neither
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
465 nor
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
467, all its instances are considered true

3. 3. 2. Customizing attribute access¶

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
468) for class instances

object. __getattr__(self , name)

Called when the default attribute access fails with an

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318 (either
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
470 raises an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318 because name is not an instance attribute or an attribute in the class tree for
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
472; or
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473 of a name property raises
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318). This method should either return the (computed) attribute value or raise an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318 exception

Note that if the attribute is found through the normal mechanism,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
18 is not called. (This is an intentional asymmetry between
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
18 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
19. ) This is done both for efficiency reasons and because otherwise
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
18 would have no way to access other attributes of the instance. Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute dictionary (but instead inserting them in another object). See the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
470 method below for a way to actually get total control over attribute access

object. __getattribute__(bản thân , tên)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
18, the latter will not be called unless
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
470 either calls it explicitly or raises an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318. This method should return the (computed) attribute value or raise an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318 exception. In order to avoid infinite recursion in this method, its implementation should always call the base class method with the same name to access any attributes it needs, for example,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
485

Ghi chú

This method may still be bypassed when looking up special methods as the result of implicit invocation via language syntax or built-in functions. See Special method lookup .

For certain sensitive attribute accesses, raises an auditing event

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
79 with arguments
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
80 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
488.

object. __setattr__(self , name , value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i. e. store the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it

If

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
19 wants to assign to an instance attribute, it should call the base class method with the same name, for example,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
490

For certain sensitive attribute assignments, raises an auditing event

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
491 with arguments
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
80,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
488,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
494.

object. __delattr__(self , name)

Like

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
19 but for attribute deletion instead of assignment. This should only be implemented if
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
496 is meaningful for the object

For certain sensitive attribute deletions, raises an auditing event

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
497 with arguments
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
80 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
488.

object. __dir__(self)

Called when

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
300 is called on the object. A sequence must be returned.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
300 converts the returned sequence to a list and sorts it

3. 3. 2. 1. Customizing module attribute access¶

Special names

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
303 can be also used to customize access to module attributes. The
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 function at the module level should accept one argument which is the name of an attribute and return the computed value or raise an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318. If an attribute is not found on a module object through the normal lookup, i. e.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
306, then
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 is searched in the module
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 before raising an
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318. If found, it is called with the attribute name and the result is returned

The

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
303 function should accept no arguments, and return a sequence of strings that represents the names accessible on module. If present, this function overrides the standard
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
300 search on a module

For a more fine grained customization of the module behavior (setting attributes, properties, etc. ), one can set the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 attribute of a module object to a subclass of
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
313. For example

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule

Ghi chú

Defining module

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 and setting module
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 only affect lookups made using the attribute access syntax – directly accessing the module globals (whether by code within the module, or via a reference to the module’s globals dictionary) is unaffected

Changed in version 3. 5.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 module attribute is now writable.

New in version 3. 7.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
303 module attributes.

See also

PEP 562 - Module __getattr__ and __dir__

Describes the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
303 functions on modules

3. 3. 2. 2. Implementing Descriptors¶

The following methods only apply when an instance of the class containing the method (a so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property in the owner class’

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19

đối tượng. __get__(self , instance , owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute was accessed through, or

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 when the attribute is accessed through the owner

This method should return the computed attribute value or raise an

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
318 exception

PEP 252 specifies that

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473 is callable with one or two arguments. Python’s own built-in descriptors support this specification; however, it is likely that some third-party tools have descriptors that require both arguments. Python’s own
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
470 implementation always passes in both arguments whether they are required or not

object. __set__(self , instance , value)

Called to set the attribute on an instance instance of the owner class to a new value, value

Note, adding

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326 or
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
327 changes the kind of descriptor to a “data descriptor”. See Invoking Descriptors for more details.

object. __delete__(self , instance)

Called to delete the attribute on an instance instance of the owner class

The attribute

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
328 is interpreted by the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
329 module as specifying the class where this object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument (for example, CPython sets this attribute for unbound methods that are implemented in C)

3. 3. 2. 3. Invoking Descriptors¶

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by methods in the descriptor protocol.

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326, and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
327. If any of those methods are defined for an object, it is said to be a descriptor

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
333 has a lookup chain starting with
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
334, then
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
335, and continuing through the base classes of
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
336 excluding metaclasses

Tuy nhiên, nếu giá trị tra cứu là một đối tượng xác định một trong các phương thức mô tả, thì Python có thể ghi đè hành vi mặc định và gọi phương thức mô tả thay thế. Where this occurs in the precedence chain depends on which descriptor methods were defined and how they were called

The starting point for descriptor invocation is a binding,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
333. Làm thế nào các đối số được lắp ráp phụ thuộc vào
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
30

Direct Call

The simplest and least common call is when user code directly invokes a descriptor method.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
339

Instance Binding

If binding to an object instance,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
333 is transformed into the call.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341

Class Binding

If binding to a class,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
342 is transformed into the call.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
343

Super Binding

A dotted lookup such as

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
344 searches
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
345 for a base class
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
346 following
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
347 and then returns
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
348. If not a descriptor,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
0 is returned unchanged

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A descriptor can define any combination of

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
327. If it does not define
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473, then accessing the attribute will return the descriptor object itself unless there is a value in the object’s instance dictionary. If the descriptor defines
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326 and/or
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
327, it is a data descriptor; if it defines neither, it is a non-data descriptor. Thông thường, bộ mô tả dữ liệu xác định cả
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326, trong khi bộ mô tả phi dữ liệu chỉ có phương thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473. Data descriptors with
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
473 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326 (and/or
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
327) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors can be overridden by instances

Các phương thức Python (bao gồm cả những phương thức được trang trí bằng

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
362 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
363) được triển khai dưới dạng bộ mô tả phi dữ liệu. Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that differ from other instances of the same class

The

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
364 function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of a property

3. 3. 2. 4. __slots__¶

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 and __weakref__ (unless explicitly declared in __slots__ or available in a parent. )

The space saved over using

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 can be significant. Attribute lookup speed can be significantly improved as well

object. __slots__

Biến lớp này có thể được gán một chuỗi, có thể lặp lại hoặc chuỗi các chuỗi có tên biến được sử dụng bởi các thể hiện. __slots__ reserves space for the declared variables and prevents the automatic creation of

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 and __weakref__ for each instance

3. 3. 2. 4. 1. Notes on using __slots__¶
  • When inheriting from a class without __slots__, the

    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    19 and __weakref__ attribute of the instances will always be accessible

  • Without a

    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    19 variable, instances cannot be assigned new variables not listed in the __slots__ definition. Attempts to assign to an unlisted variable name raises
    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    318. If dynamic assignment of new variables is desired, then add
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    371 to the sequence of strings in the __slots__ declaration

  • Without a __weakref__ variable for each instance, classes defining __slots__ do not support

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    372 to its instances. Nếu cần hỗ trợ tham chiếu yếu, hãy thêm
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    373 vào chuỗi chuỗi trong khai báo __slots__

  • __slots__ được triển khai ở cấp lớp bằng cách tạo mô tả cho mỗi tên biến. As a result, class attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class attribute would overwrite the descriptor assignment.

  • The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents are available in child classes. However, child subclasses will get a

    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    19 and __weakref__ unless they also define __slots__ (which should only contain names of any additional slots)

  • If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined. In the future, a check may be added to prevent this

  • Nonempty __slots__ does not work for classes derived from “variable-length” built-in types such as

    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    49,
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    32 and
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    377

  • Any non-string iterable may be assigned to __slots__.

  • If a

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    378 is used to assign __slots__, the dictionary keys will be used as the slot names. The values of the dictionary can be used to provide per-attribute docstrings that will be recognised by
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    379 and displayed in the output of
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    380

  • class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    22 assignment works only if both classes have the same __slots__

  • Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have attributes created by slots (the other bases must have empty slot layouts) - violations raise

    import sys
    from types import ModuleType
    
    class VerboseModule(ModuleType):
        def __repr__(self):
            return f'Verbose {self.__name__}'
    
        def __setattr__(self, attr, value):
            print(f'Setting {attr}...')
            super().__setattr__(attr, value)
    
    sys.modules[__name__].__class__ = VerboseModule
    
    42.

  • If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the __slots__ attribute will be an empty iterator.

3. 3. 3. Customizing class creation¶

Whenever a class inherits from another class,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
383 is called on the parent class. This way, it is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but where class decorators only affect the specific class they’re applied to,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384 solely applies to future subclasses of the class defining the method

classmethod object. __init_subclass__(cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. Nếu được định nghĩa là một phương thức thể hiện bình thường, phương thức này được chuyển đổi hoàn toàn thành một phương thức lớp

Keyword arguments which are given to a new class are passed to the parent’s class

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384. For compatibility with other classes using
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384, one should take out the needed keyword arguments and pass the others over to the base class, as in

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass

The default implementation

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
387 does nothing, but raises an error if it is called with any arguments

Ghi chú

The metaclass hint

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388 is consumed by the rest of the type machinery, and is never passed to
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384 implementations. The actual metaclass (rather than the explicit hint) can be accessed as
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
390

New in version 3. 6

When a class is created,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
391 scans the class variables and makes callbacks to those with a
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
392 hook

object. __set_name__(self , owner , name)

Automatically called at the time the owning class owner is created. The object has been assigned to name in that class

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
3

If the class variable is assigned after the class is created,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
392 will not be called automatically. If needed,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
392 can be called directly

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
4

See Creating the class object for more details.

New in version 3. 6

3. 3. 3. 1. Metaclasses¶

By default, classes are constructed using

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
1. The class body is executed in a new namespace and the class name is bound locally to the result of
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
396

The class creation process can be customized by passing the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388 keyword argument in the class definition line, or by inheriting from an existing class that included such an argument. In the following example, both
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
398 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
399 are instances of
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
300

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations described below

When a class definition is executed, the following steps occur

  • MRO entries are resolved;

  • the appropriate metaclass is determined;

  • the class namespace is prepared;

  • the class body is executed;

  • the class object is created

3. 3. 3. 2. Resolving MRO entries¶

If a base that appears in class definition is not an instance of

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
301, then an
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 method is searched on it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used instead of this base. The tuple may be empty, in such case the original base is ignored

See also

PEP 560 - Core support for typing module and generic types

3. 3. 3. 3. Determining the appropriate metaclass¶

The appropriate metaclass for a class definition is determined as follows

  • if no bases and no explicit metaclass are given, then

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    1 is used;

  • if an explicit metaclass is given and it is not an instance of

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    1, then it is used directly as the metaclass;

  • if an instance of

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    1 is given as the explicit metaclass, or bases are defined, then the most derived metaclass is used

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i. e.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
390) of all specified base classes. The most derived metaclass is one which is a subtype of all of these candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42

3. 3. 3. 4. Preparing the class namespace¶

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has a

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308 attribute, it is called as
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
309 (where the additional keyword arguments, if any, come from the class definition). The
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308 method should be implemented as a
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
311. Không gian tên được trả về bởi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308 được chuyển vào
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
313, nhưng khi đối tượng lớp cuối cùng được tạo, không gian tên được sao chép vào một
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
425 mới

If the metaclass has no

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308 attribute, then the class namespace is initialised as an empty ordered mapping

See also

PEP 3115 - Metaclasses in Python 3000

Introduced the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308 namespace hook

3. 3. 3. 5. Executing the class body¶

The class body is executed (approximately) as

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
317. The key difference from a normal call to
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
318 is that lexical scoping allows the class body (including any methods) to reference names from the current and outer scopes when the class definition occurs inside a function

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or through the implicit lexically scoped

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 reference described in the next section

3. 3. 3. 6. Creating the class object¶

Once the class namespace has been populated by executing the class body, the class object is created by calling

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
320 (the additional keywords passed here are the same as those passed to
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308)

This class object is the one that will be referenced by the zero-argument form of

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
322.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 is an implicit closure reference created by the compiler if any methods in a class body refer to either
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 or
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
325. This allows the zero argument form of
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
322 to correctly identify the class being defined based on lexical scoping, while the class or instance that was used to make the current call is identified based on the first argument passed to the method

CPython implementation detail. In CPython 3. 6 and later, the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 cell is passed to the metaclass as a
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
328 entry in the class namespace. If present, this must be propagated up to the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
329 call in order for the class to be initialised correctly. Failing to do so will result in a
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
89 in Python 3. 8

When using the default metaclass

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
301, or any metaclass that ultimately calls
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
329, the following additional customization steps are invoked after creating the class object

  1. The

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    329 method collects all of the attributes in the class namespace that define a
    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    392 method;

  2. Those

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    335 methods are called with the class being defined and the assigned name of that particular attribute;

  3. The

    class Philosopher:
        def __init_subclass__(cls, /, default_name, **kwargs):
            super().__init_subclass__(**kwargs)
            cls.default_name = default_name
    
    class AustralianPhilosopher(Philosopher, default_name="Bruce"):
        pass
    
    383 hook is called on the immediate parent of the new class in its method resolution order

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting object is bound in the local namespace as the defined class

When a new class is created by

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
329, the object provided as the namespace parameter is copied to a new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
19 attribute of the class object

See also

PEP 3135 - New super

Describes the implicit

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
22 closure reference

3. 3. 3. 7. Uses for metaclasses¶

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource locking/synchronization

3. 3. 4. Customizing instance and subclass checks¶

The following methods are used to override the default behavior of the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
340 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341 built-in functions

In particular, the metaclass

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
342 implements these methods in order to allow the addition of Abstract Base Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs

lớp. __instancecheck__(self , instance)

Return true if instance should be considered a (direct or indirect) instance of class. Nếu được xác định, được gọi để thực hiện

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
343

lớp. __subclasscheck__(self , subclass)

Return true if subclass should be considered a (direct or indirect) subclass of class. Nếu được xác định, được gọi để thực hiện

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
344

Note that these methods are looked up on the type (metaclass) of a class. Chúng không thể được định nghĩa là phương thức lớp trong lớp thực tế. Điều này phù hợp với việc tra cứu các phương thức đặc biệt được gọi trên các cá thể, chỉ trong trường hợp này, cá thể đó chính là một lớp

See also

PEP 3119 - Giới thiệu các lớp cơ sở trừu tượng

Bao gồm thông số kỹ thuật để tùy chỉnh hành vi của

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
340 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341 thông qua
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
347 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
348, với động lực cho chức năng này trong ngữ cảnh thêm Lớp cơ sở trừu tượng (xem mô-đun
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
349) vào ngôn ngữ

3. 3. 5. Mô phỏng các loại chung¶

Khi sử dụng chú thích loại , việc tham số hóa loại chung using Python’s square-brackets notation. For example, the annotation

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
350 might be used to signify a
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
351 in which all the elements are of type
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
49.

See also

PEP 484 - Gợi ý loại

Giới thiệu khung của Python cho các chú thích loại

Các loại bí danh chung

Tài liệu cho các đối tượng đại diện cho các lớp chung được tham số hóa

Thuốc chung , Thuốc chung do người dùng định nghĩa
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
353

Tài liệu về cách triển khai các lớp chung có thể được tham số hóa trong thời gian chạy và được hiểu bởi trình kiểm tra kiểu tĩnh

Một lớp nói chung chỉ có thể được tham số hóa nếu nó định nghĩa phương thức lớp đặc biệt

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354

phương thức lớp đối tượng. __class_getitem__(cls , key)

Trả về một đối tượng đại diện cho chuyên môn hóa của một lớp chung bằng các đối số loại được tìm thấy trong khóa

Khi được định nghĩa trên một lớp,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 sẽ tự động là một phương thức của lớp. Như vậy, nó không cần phải được trang trí bằng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
363 khi nó được định nghĩa

3. 3. 5. 1. Mục đích của __class_getitem__¶

Mục đích của

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 là cho phép tham số hóa thời gian chạy của các lớp chung trong thư viện chuẩn để dễ dàng áp dụng gợi ý loại cho các lớp này.

Để triển khai các lớp chung tùy chỉnh có thể được tham số hóa trong thời gian chạy và được hiểu bởi trình kiểm tra kiểu tĩnh, người dùng nên kế thừa từ một lớp thư viện chuẩn đã triển khai

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 hoặc kế thừa từ
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
353, lớp có triển khai riêng của nó là
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354

Việc triển khai tùy chỉnh của

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 trên các lớp được xác định bên ngoài thư viện chuẩn có thể không được hiểu bởi trình kiểm tra loại của bên thứ ba, chẳng hạn như mypy. Không khuyến khích sử dụng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 trên bất kỳ lớp nào cho các mục đích khác ngoài gợi ý loại

3. 3. 5. 2. __class_getitem__ so với __getitem__¶

Thông thường, đăng ký của một đối tượng sử dụng dấu ngoặc vuông sẽ gọi phương thức thể hiện

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306 được định nghĩa trên lớp của đối tượng. Tuy nhiên, nếu đối tượng được đăng ký chính là một lớp, thì phương thức lớp
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 có thể được gọi thay thế.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 sẽ trả về một đối tượng GenericAlias nếu nó được xác định đúng.

Được trình bày bằng biểu thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
366, trình thông dịch Python tuân theo quy trình giống như sau để quyết định nên gọi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306 hay
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3

Trong Python, tất cả các lớp đều là thể hiện của các lớp khác. Lớp của một lớp được gọi là siêu lớp của lớp đó và hầu hết các lớp đều có lớp

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
301 làm siêu lớp của chúng.
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
301 không định nghĩa
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306, nghĩa là các biểu thức như
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
350,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
373 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
374 đều cho kết quả là
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 được gọi.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3

Tuy nhiên, nếu một lớp có siêu dữ liệu tùy chỉnh xác định

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306, thì việc đăng ký lớp đó có thể dẫn đến hành vi khác. Một ví dụ về điều này có thể được tìm thấy trong mô-đun
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
377

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3

See also

PEP 560 - Hỗ trợ cốt lõi để nhập mô-đun và các loại chung

Giới thiệu

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 và phác thảo khi đăng ký dẫn đến việc gọi
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 thay vì
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306

3. 3. 6. Mô phỏng các đối tượng có thể gọi được¶

đối tượng. __call__(self[ , args. ])

Được gọi khi thể hiện được “gọi” là một hàm;

3. 3. 7. Mô phỏng các loại vùng chứa¶

Các phương thức sau đây có thể được định nghĩa để triển khai các đối tượng vùng chứa. Vùng chứa thường là dãy (chẳng hạn như

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
383 hoặc
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384) hoặc ánh xạ ( . The first set of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should be the integers k for which
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
386 where N is the length of the sequence, or
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
387 objects, which define a range of items. It is also recommended that mappings provide the methods
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
389,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
390,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
391,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
392,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
393,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
394,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
395,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
396, and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
397 behaving similar to those for Python’s standard
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
378 objects. The
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
399 module provides a
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
300 abstract base class to help create those methods from a base set of
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
303, and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388. Mutable sequences should provide methods
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
305,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
306,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
307,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
308,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
309,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
394,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
311,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
312 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
313, like Python standard
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
351 objects. Finally, sequence types should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
315,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
316,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
317,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
318,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
319 and
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
320 described below; they should not define other numerical operators. It is recommended that both mappings and sequences implement the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
321 method to allow efficient use of the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
322 operator; for mappings,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
322 should search the mapping’s keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences implement the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
321 method to allow efficient iteration through the container; for mappings,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
321 should iterate through the object’s keys; for sequences, it should iterate through the values.

đối tượng. __len__(self)

Called to implement the built-in function

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32. Should return the length of the object, an integer
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
39 0. Ngoài ra, một đối tượng không xác định phương thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
467 và phương thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
465 của nó trả về 0 được coi là sai trong ngữ cảnh Boolean

CPython implementation detail. In CPython, the length is required to be at most

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
330. If the length is larger than
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
330 some features (such as
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
32) may raise
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
333. To prevent raising
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
333 by truth value testing, an object must define a
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
467 method

object. __length_hint__(self)

Called to implement

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
336. Should return an estimated length for the object (which may be greater or less than the actual length). The length must be an integer
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
39 0. The return value may also be
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39, which is treated the same as if the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
339 method didn’t exist at all. This method is purely an optimization and is never required for correctness

Mới trong phiên bản 3. 4

Ghi chú

Slicing is done exclusively with the following three methods. A call like

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
3

is translated to

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
0

and so forth. Missing slice items are always filled in with

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38

object. __getitem__(self , key)

Called to implement evaluation of

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341. For sequence types, the accepted keys should be integers and slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type) is up to the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306 method. If key is of an inappropriate type,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42 may be raised; if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
344 should be raised. For mapping types, if key is missing (not in the container),
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
345 should be raised.

Ghi chú

Các vòng lặp

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
346 hy vọng rằng một
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
344 sẽ được nâng lên đối với các chỉ mục không hợp lệ để cho phép phát hiện đúng phần cuối của chuỗi

Ghi chú

When subscripting a class, the special class method

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 may be called instead of
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306. See __class_getitem__ versus __getitem__ for more details.

object. __setitem__(self , key , value)

Called to implement assignment to

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341. Same note as for
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306. This should only be implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as for the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306 method

object. __delitem__(self , key)

Called to implement deletion of

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341. Same note as for
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306. This should only be implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed from the sequence. The same exceptions should be raised for improper key values as for the
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306 method

object. __missing__(self , key)

Được gọi bởi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
425.
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306 để triển khai
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341 cho các lớp con dict khi khóa không có trong từ điển

đối tượng. __iter__(bản thân)

Phương thức này được gọi khi cần có bộ lặp cho vùng chứa. Phương thức này sẽ trả về một đối tượng lặp mới có thể lặp qua tất cả các đối tượng trong vùng chứa. Đối với ánh xạ, nó sẽ lặp lại các khóa của vùng chứa.

đối tượng. __reversed__(bản thân)

Được gọi (nếu có) bởi

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
359 tích hợp để thực hiện phép lặp ngược. Nó sẽ trả về một đối tượng lặp mới lặp lại trên tất cả các đối tượng trong vùng chứa theo thứ tự ngược lại

Nếu phương pháp

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
360 không được cung cấp, thì
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
359 tích hợp sẵn sẽ quay trở lại sử dụng giao thức trình tự (
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
465 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306). Các đối tượng hỗ trợ giao thức trình tự chỉ nên cung cấp
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
360 nếu chúng có thể cung cấp cách triển khai hiệu quả hơn cách triển khai do
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
359 cung cấp

Các toán tử kiểm tra tư cách thành viên (

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
322 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
367) thường được triển khai như một phép lặp thông qua một vùng chứa. Tuy nhiên, các đối tượng vùng chứa có thể cung cấp phương thức đặc biệt sau với cách triển khai hiệu quả hơn, điều này cũng không yêu cầu đối tượng phải lặp lại

đối tượng. __contains__(bản thân , mục)

Được gọi để triển khai toán tử thử nghiệm thành viên. Nên trả về true nếu mục là chính nó, ngược lại là false. Đối với các đối tượng ánh xạ, điều này nên xem xét các khóa của ánh xạ hơn là các giá trị hoặc các cặp khóa-mục

Đối với các đối tượng không xác định

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
321, thử nghiệm tư cách thành viên trước tiên thử lặp lại qua
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
321, sau đó là giao thức lặp trình tự cũ qua
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
306, xem phần này trong tài liệu tham khảo ngôn ngữ . . . . . . . . . . . . . .

3. 3. 8. Mô phỏng các kiểu số¶

Các phương thức sau đây có thể được định nghĩa để mô phỏng các đối tượng số. Các phương thức tương ứng với các hoạt động không được hỗ trợ bởi loại số cụ thể được triển khai (e. g. , hoạt động theo bit cho các số không tách rời) sẽ không được xác định

đối tượng. __add__(bản thân , khác . )object.__sub__(bản thân , khác . )object.__mul__(bản thân , khác . )object.__matmul__(bản thân , khác . )object.__truediv__(bản thân , khác . )object.__floordiv__(bản thân , khác . )object.__mod__(bản thân , khác . )object.__divmod__(bản thân , khác . )object.__pow__(bản thân , khác . [, modulo])object.__lshift__(bản thân , khác . )object.__rshift__(bản thân , khác . )object.__and__(bản thân , khác . )object.__xor__(bản thân , khác . )object.__or__(bản thân , khác)

Các phương thức này được gọi để thực hiện các phép toán số học nhị phân (

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
371,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
372,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
373,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
374,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
375,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
376,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
377,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
378,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
379,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
380,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
381,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
382,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
383,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
385). Chẳng hạn, để đánh giá biểu thức
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
386, trong đó x là một thể hiện của lớp có phương thức
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
315, thì
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388 được gọi. Phương pháp
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
389 phải tương đương với việc sử dụng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
390 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
391; . Lưu ý rằng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
393 phải được xác định để chấp nhận đối số thứ ba tùy chọn nếu phiên bản ternary của hàm
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
379 tích hợp được hỗ trợ

Nếu một trong các phương thức đó không hỗ trợ thao tác với các đối số được cung cấp, thì nó sẽ trả về

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39

object. __radd__(bản thân , khác . )object.__rsub__(bản thân , khác . )object.__rmul__(bản thân , khác . )object.__rmatmul__(bản thân , khác . )object.__rtruediv__(bản thân , khác . )object.__rfloordiv__(self , other)object. __rmod__(self , other)object. __rdivmod__(self , other)object. __rpow__(self , other[ , modulo])object. __rlshift__(self , other)object. __rrshift__(self , other)object. __rand__(self , other)object. __rxor__(self , other)object. __ror__(self , other)

These methods are called to implement the binary arithmetic operations (

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
371,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
372,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
373,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
374,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
375,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
376,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
377,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
378,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
379,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
380,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
381,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
382,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
383,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
384,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
385) with reflected (swapped) operands. These functions are only called if the left operand does not support the corresponding operation 3 and the operands are of different types. 4 For instance, to evaluate the expression
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
311, where y is an instance of a class that has an
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
312 method,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
313 is called if
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
314 returns NotImplemented

Note that ternary

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
379 will not try calling
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
316 (the coercion rules would become too complicated)

Ghi chú

If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different implementation of the reflected method for the operation, this method will be called before the left operand’s non-reflected method. This behavior allows subclasses to override their ancestors’ operations

object. __iadd__(self , other)object. __isub__(self , other)object. __imul__(self , other)object. __imatmul__(self , other)object. __itruediv__(self , other)object. __ifloordiv__(bản thân , khác . )object.__imod__(self , other)object. __ipow__(self , other[ , modulo])object. __ilshift__(self , other)object. __irshift__(self , other)object. __iand__(self , other)object. __ixor__(self , other)object. __ior__(self , other)

Các phương thức này được gọi để thực hiện các bài tập số học tăng cường (

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
317,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
318,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
319,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
320,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
321,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
322,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
323,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
324,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
325,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
326,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
327,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
328,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
329). Các phương thức này sẽ cố gắng thực hiện thao tác tại chỗ (bản thân sửa đổi) và trả về kết quả (có thể là, nhưng không nhất thiết phải là bản thân). Nếu một phương thức cụ thể không được xác định, phép gán tăng cường sẽ quay trở lại các phương thức thông thường. Chẳng hạn, nếu x là một thể hiện của một lớp có phương thức
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
317, thì
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
331 tương đương với
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
332. Mặt khác,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
333 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
334 được xem xét, giống như đánh giá của
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
386. Trong một số trường hợp nhất định, phép gán tăng cường có thể dẫn đến lỗi không mong muốn (xem Tại sao a_tuple[i] += ['item'] đưa ra ngoại lệ khi phép bổ sung hoạt động?), but this behavior is in fact part of the data model.

đối tượng. __neg__(bản thân) ¶ . object.__pos__(bản thân) ¶ . object.__abs__(bản thân) ¶ . object.__invert__(bản thân)

Được gọi để thực hiện các phép toán số học đơn vị (

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
372,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
371,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
338 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
339)

đối tượng. __complex__(bản thân) ¶ . object.__int__(bản thân) ¶ . object.__float__(bản thân)

Được gọi để triển khai các chức năng tích hợp sẵn

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
340,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
342. Nên trả về một giá trị của loại thích hợp

đối tượng. __index__(bản thân)

Được gọi để triển khai

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
343 và bất cứ khi nào Python cần chuyển đổi dễ dàng đối tượng số thành đối tượng số nguyên (chẳng hạn như trong cắt lát hoặc trong các hàm
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
344,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
345 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
346 tích hợp sẵn). Sự hiện diện của phương thức này chỉ ra rằng đối tượng số là một kiểu số nguyên. Phải trả về một số nguyên

Nếu

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
347,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
348 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
349 không được xác định thì các hàm tích hợp tương ứng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
342 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
340 sẽ quay trở lại
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
353

đối tượng. __round__(bản thân[ , . ndigits])object.__trunc__(bản thân) ¶ . object.__floor__(bản thân) ¶ . object.__ceil__(bản thân)

Được gọi để thực hiện chức năng tích hợp sẵn

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
354 và
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
72 chức năng
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
356,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
357 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
358. Trừ khi ndigits được chuyển đến
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
359, tất cả các phương thức này sẽ trả về giá trị của đối tượng bị cắt bớt thành một
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
360 (thường là một
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
49)

Hàm tích hợp sẵn

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341 quay trở lại
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
363 nếu cả
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
347 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
353 đều không được xác định

Đã thay đổi trong phiên bản 3. 11. Việc ủy ​​quyền của

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
341 cho
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
363 không được chấp nhận.

3. 3. 9. Với Trình quản lý ngữ cảnh câu lệnh¶

Trình quản lý bối cảnh là một đối tượng xác định bối cảnh thời gian chạy sẽ được thiết lập khi thực thi câu lệnh

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
8. Trình quản lý ngữ cảnh xử lý việc nhập và thoát khỏi ngữ cảnh thời gian chạy mong muốn để thực thi khối mã. Trình quản lý bối cảnh thường được gọi bằng cách sử dụng câu lệnh
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
8 (được mô tả trong phần Câu lệnh with ), nhưng cũng có thể được sử dụng bằng cách gọi trực tiếp các phương thức của chúng.

Các ứng dụng điển hình của trình quản lý bối cảnh bao gồm lưu và khôi phục các loại trạng thái toàn cầu khác nhau, khóa và mở khóa tài nguyên, đóng các tệp đã mở, v.v.

Để biết thêm thông tin về trình quản lý ngữ cảnh, hãy xem Các loại trình quản lý ngữ cảnh .

đối tượng. __enter__(bản thân)

Nhập bối cảnh thời gian chạy liên quan đến đối tượng này. Câu lệnh

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
8 sẽ ràng buộc giá trị trả về của phương thức này với (các) mục tiêu được chỉ định trong mệnh đề
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
371 của câu lệnh, nếu có

đối tượng. __exit__(self , exc_type, exc_value, traceback)

Thoát bối cảnh thời gian chạy liên quan đến đối tượng này. Các tham số mô tả ngoại lệ khiến ngữ cảnh bị thoát. Nếu ngữ cảnh được thoát mà không có ngoại lệ, cả ba đối số sẽ là

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38

Nếu một ngoại lệ được cung cấp và phương thức muốn loại bỏ ngoại lệ đó (i. e. , ngăn nó lan truyền), nó sẽ trả về một giá trị thực. Mặt khác, ngoại lệ sẽ được xử lý bình thường khi thoát khỏi phương thức này

Lưu ý rằng các phương thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
373 không được tăng lại ngoại lệ đã truyền vào;

See also

PEP 343 - Câu lệnh “với”

Thông số kỹ thuật, nền tảng và ví dụ cho câu lệnh Python

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
8

3. 3. 10. Tùy chỉnh đối số vị trí trong khớp mẫu lớp¶

Khi sử dụng tên lớp trong một mẫu, các đối số vị trí trong mẫu không được phép theo mặc định, tôi. e.

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
375 thường không hợp lệ nếu không có hỗ trợ đặc biệt trong
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
398. Để có thể sử dụng loại mẫu đó, lớp cần xác định thuộc tính __match_args__

đối tượng. __match_args__

Biến lớp này có thể được gán một bộ chuỗi. Khi lớp này được sử dụng trong mẫu lớp có đối số vị trí, mỗi đối số vị trí sẽ được chuyển đổi thành đối số từ khóa, sử dụng giá trị tương ứng trong __match_args__ làm từ khóa. Việc không có thuộc tính này tương đương với việc đặt nó thành

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
377

Ví dụ: nếu

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
378 là
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
379 có nghĩa là
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
375 tương đương với
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
381. Lưu ý rằng số đối số trong mẫu phải nhỏ hơn hoặc bằng số phần tử trong __match_args__;

New in version 3. 10

See also

PEP 634 - Structural Pattern Matching

The specification for the Python

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
383 statement

3. 3. 11. Special method lookup¶

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
1

The rationale behind this behaviour lies with a number of special methods such as

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415 and
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
46 that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional lookup process, they would fail when invoked on the type object itself

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
2

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass confusion’, and is avoided by bypassing the instance when looking up special methods

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
3

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally also bypasses the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
470 method even of the object’s metaclass

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
4

Bypassing the

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
470 machinery in this fashion provides significant scope for speed optimisations within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set on the class object itself in order to be consistently invoked by the interpreter)

3. 4. Coroutines¶

3. 4. 1. Awaitable Objects¶

Một awaitable thường triển khai một phương thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388. Coroutine objects returned from
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
59 functions are awaitable.

Ghi chú

The generator iterator objects returned from generators decorated with

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
390 are also awaitable, but they do not implement
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388.

object. __await__(self)

Must return an iterator . Should be used to implement awaitable objects. Chẳng hạn,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
392 triển khai phương thức này để tương thích với biểu thức
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
60.

New in version 3. 5

See also

PEP 492 for additional information about awaitable objects

3. 4. 2. Coroutine Objects¶

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388 and iterating over the result. When the coroutine has finished executing and returns, the iterator raises
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
58, and the exception’s
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
494 attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator. Coroutines should not directly raise unhandled
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
58 exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator methods ). However, unlike generators, coroutines do not directly support iteration.

Changed in version 3. 5. 2. It is a

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
89 to await on a coroutine more than once.

coroutine. send(value)

Starts or resumes execution of the coroutine. If value is

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38, this is equivalent to advancing the iterator returned by
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388. If value is not
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38, this method delegates to the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
302 method of the iterator that caused the coroutine to suspend. The result (return value,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
58, or other exception) is the same as when iterating over the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388 return value, described above

coroutine. throw(value)coroutine. throw(type[ , value[ , traceback]])

Raises the specified exception in the coroutine. This method delegates to the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
305 method of the iterator that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension point. The result (return value,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
58, or other exception) is the same as when iterating over the
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
388 return value, described above. If the exception is not caught in the coroutine, it propagates back to the caller

coroutine. close()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
5 method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
309 at the suspension point, causing the coroutine to immediately clean itself up. Finally, the coroutine is marked as having finished executing, even if it was never started

Các đối tượng Coroutine được tự động đóng bằng quy trình trên khi chúng sắp bị hủy

3. 4. 3. Trình lặp không đồng bộ¶

Trình lặp không đồng bộ có thể gọi mã không đồng bộ trong phương thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
310 của nó

Trình vòng lặp không đồng bộ có thể được sử dụng trong câu lệnh

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
62

đối tượng. __aiter__(bản thân)

Phải trả về một đối tượng lặp không đồng bộ

đối tượng. __anext__(bản thân)

Phải trả về một kết quả có thể chờ đợi trong giá trị tiếp theo của trình vòng lặp. Sẽ phát sinh lỗi

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
69 khi quá trình lặp kết thúc

Một ví dụ về một đối tượng có thể lặp lại không đồng bộ

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
5

New in version 3. 5

Đã thay đổi trong phiên bản 3. 7. Trước Python 3. 7,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
313 có thể trả về một sự chờ đợi sẽ phân giải thành trình lặp không đồng bộ .

Bắt đầu với Python 3. 7,

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
313 phải trả về một đối tượng lặp không đồng bộ. Trả lại bất kỳ thứ gì khác sẽ dẫn đến lỗi
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
42

3. 4. 4. Trình quản lý ngữ cảnh không đồng bộ¶

Trình quản lý bối cảnh không đồng bộ là trình quản lý bối cảnh có thể tạm dừng thực thi trong các phương thức

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
316 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
317 của nó

Trình quản lý bối cảnh không đồng bộ có thể được sử dụng trong câu lệnh

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
61

đối tượng. __aenter__(bản thân)

Tương tự về mặt ngữ nghĩa với

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
319, điểm khác biệt duy nhất là nó phải trả về giá trị chờ đợi

đối tượng. __aexit__(bản thân , exc_type, exc_value, traceback)

Tương tự về mặt ngữ nghĩa với

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
373, điểm khác biệt duy nhất là nó phải trả về giá trị chờ đợi

Một ví dụ về lớp trình quản lý ngữ cảnh không đồng bộ

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
6

New in version 3. 5

chú thích

1

Trong một số trường hợp, có thể thay đổi loại đối tượng, trong các điều kiện được kiểm soát nhất định. Mặc dù vậy, nhìn chung đó không phải là một ý kiến ​​hay vì nó có thể dẫn đến một số hành vi rất kỳ lạ nếu xử lý không đúng cách.

2

Các phương pháp

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
415,
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
321,
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
360 và
class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
321 có cách xử lý đặc biệt cho việc này;

3

“Không hỗ trợ” ở đây có nghĩa là lớp không có phương thức như vậy hoặc phương thức trả về

import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
39. Không đặt phương thức thành
import sys
from types import ModuleType

class VerboseModule(ModuleType):
    def __repr__(self):
        return f'Verbose {self.__name__}'

    def __setattr__(self, attr, value):
        print(f'Setting {attr}...')
        super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule
38 nếu bạn muốn buộc dự phòng cho phương thức được phản ánh của toán hạng bên phải—thay vào đó, điều đó sẽ có tác dụng ngược lại là chặn dự phòng đó một cách rõ ràng

4

Đối với các toán hạng cùng loại, người ta cho rằng nếu phương thức không được phản ánh – chẳng hạn như

class Philosopher:
    def __init_subclass__(cls, /, default_name, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
    pass
315 – không thành công thì hoạt động tổng thể không được hỗ trợ, đó là lý do tại sao phương thức được phản ánh không được gọi